Abstract

The inelastic deformation properties of sintered metal nanoparticle joints are complicated by the inherent nanocrystalline and nanoporous structures, as well as by dislocation networks formed in sintering or under cyclic loading. Creep rates of sintered nanocopper structures were found to be dominated by the diffusion of individual atoms or vacancies, while dislocation motion remained negligible up to stresses far above those of practical interest. Rapid sintering of one material led to unstable structures with particularly narrow necks between Cu particles and a dense network of dislocations. Creep rates were dominated by dislocation core diffusion within the necks to the nearest open pore surfaces. Exposure to elevated temperatures led to coarsening of the necks and, importantly, annihilation of dislocations, which reduced the creep strongly. Longer sintering of another material led to wider necks without excess dislocations and thus more stable structures. Creep rates were dominated by grain boundary diffusion within the necks and could be strongly enhanced by subsequent work hardening in mild cycling.

References

1.
Chen
,
C.
,
Yu
,
D.
, and
Chen
,
K.-N.
,
2015
, “
Vertical Interconnects of Microbumps in 3D Integration
,”
MRS Bull.
,
40
(
3
), pp.
257
263
.10.1557/mrs.2015.29
2.
Tu
,
K.-N.
,
2011
, “
Reliability Challenges in 3D IC Packaging Technology
,”
Microelectron. Reliab.
,
51
(
3
), pp.
517
523
.10.1016/j.microrel.2010.09.031
3.
Ouyang
,
F.-Y.
,
W.-C.
,
Jhu
,
H.
,
Hsu
, and., and
Tsung-Han
,
Y.
,
2014
, “
Electromigration and Thermomigration of Pb-Free Microbumps in Three-Dimensional Integrated Circuits Packaging
,” IEEE International Conference on Electronics Packaging (
ICEP
), Toyama, Japan, Apr. 23–25, pp.
90
95
.10.1109/ICEP.2014.6826668
4.
Lin
,
Y.-M.
,
Zhan
,
C.-J.
,
Juang
,
J.-Y.
,
Lau
,
J. H.
,
Chen
,
T.-H.
,
Lo
,
R.
,
Kao
,
M.
,
Tian
,
T.
, and
Tu
,
K.-N.
,
2011
, “
Electromigration in Ni/Sn Intermetallic Micro Bump Joint for 3D IC Chip Stacking
,” IEEE 61st Electronic Components and Technology Conference (
ECTC
),
Lake Buena Vista, FL, May 31–June 3, pp.
351
357
.10.1109/ECTC.2011.5898537
5.
Wei
,
C. C.
,
Chen
,
C. F.
,
Liu
,
P. C.
, and
Chen
,
C.
,
2009
, “
Electromigration in Sn–Cu Intermetallic Compounds
,”
J. Appl. Phys.
,
105
(
2
), p.
023715
.10.1063/1.3072662
6.
Peng
,
P.
,
Hu
,
A.
,
Gerlich
,
A. P.
,
Zou
,
G.
,
Liu
,
L.
, and
Zhou
,
Y. N.
,
2015
, “
Joining of Silver Nanomaterials at Low Temperatures: Processes, Properties, and Applications
,”
ACS Appl. Mater. Interfaces
,
7
(
23
), pp.
12597
12618
.10.1021/acsami.5b02134
7.
Zinn
,
A.
,
Stoltenberg
,
R.
,
Fried
,
A.
,
Chang
,
J.
,
Elhawary
,
A.
,
Beddow
,
J.
, and
Chiu
,
F.
,
2012
, “
Nano Copper Based Solder-Free Electronic Assembly Material
,”
Nanotechnology
,
2
, pp.
71
74
.https://www.circuitinsight.com/pdf/nano_copper_ipc.pdf
8.
Siow
,
K. S.
,
2014
, “
Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?
,”
J. Elect. Mater.
,
43
(
4
), pp.
947
961
.10.1007/s11664-013-2967-3
9.
Ishizaki
,
T.
, and
Watanabe
,
R.
,
2012
, “
A New One-Pot Method for the Synthesis of Cu Nanoparticles for Low Temperature Bonding
,”
J. Mater. Chem.
,
22
(
48
), pp.
25198
25206
.10.1039/c2jm34954j
10.
Jianfeng
,
Y.
,
Guisheng
,
Z.
,
Anming
,
H.
, and
Zhou
,
Y. N.
,
2011
, “
Preparation of PVP Coated Cu NPs and the Application for Low-Temperature Bonding
,”
J. Mater. Chem.
,
21
(
40
), pp.
15981
15986
.10.1039/c1jm12108a
11.
Sivasubramony
,
R.
,
Kokash
,
M. Z.
,
Thekkut
,
S.
,
Shahane
,
N.
,
Thompson
,
P.
,
Mirpuri
,
K.
,
Kawana
,
Y.
,
Greene
,
C.
, and
Borgesen
,
P.
,
2021
, “
Fatigue Testing of Copper Nanoparticle Based Joints and Bonds
,”
ASME J. Electron. Packag
, epub.10.1115/1.4050871
12.
Schnabl
,
K.
,
L.
,
Wentlent
,
K.
,
Mootoo
,
S.
,
Khasawneh
,
A. A.
,
Zinn
,
J.
,
Beddow
,
E.
,
Hauptfleisch
,
D.
,
Blass
,
P.
, and
Borgesen
,
2014
, “
Nanocopper Based Solder-Free Electronic Assembly
,”
J. Electron. Mater.
,
43
(
12
), pp.
4515
4521
.10.1007/s11664-014-3478-6
13.
Kart
,
H. H.
,
Yildirim
,
H.
,
Ozdemir Kart
,
S.
, and
Çağin
,
T.
,
2014
, “
Physical Properties of Cu Nanoparticles: A Molecular Dynamics Study
,”
Mater. Chem. Phys.
,
147
(
1–2
), pp.
204
212
.10.1016/j.matchemphys.2014.04.030
14.
Fang
,
Z. Z.
, and
Wang
,
H.
,
2008
, “
Densification and Grain Growth During Sintering of Nanosized Particles
,”
Int. Mater. Rev.
,
53
(
6
), pp.
326
352
.10.1179/174328008X353538
15.
Wang
,
Y.
,
Watanabe
,
A. O.
,
Ogura
,
N.
,
Raj
,
P. M.
, and
Tummala
,
R.
,
2020
, “
Sintered Nanocopper Paste for High-Performance 3D Heterogeneous Package Integration
,”
J. Electron. Mater.
,
49
(
11
), pp.
6737
6745
.10.1007/s11664-020-08399-x
16.
Zhu
,
H.
,
1996
, “
Sintering Processes of Two Nanoparticles: A Study by Molecular Dynamics Simulations
,”
Philos. Mag. Lett.
,
73
(
1
), pp.
27
33
.10.1080/095008396181073
17.
Cheng
,
B.
, and
Ngan
,
A. H.
,
2013
, “
The Crystal Structures of Sintered Copper Nanoparticles: A Molecular Dynamics Study
,”
Int. J. Plast.
,
47
, pp.
65
79
.10.1016/j.ijplas.2013.01.006
18.
Ashby
,
M. F.
, and
Jones
,
D. R.
,
2012
,
Engineering Materials 1: An Introduction to Properties, Applications, and Design
, Vol.
1
,
Elsevier
, Oxford, UK.
19.
Legros
,
M.
,
Dehm
,
G.
,
Arzt
,
E.
, and
Balk
,
T. J.
,
2008
, “
Observation of Giant Diffusivity Along Dislocation Cores
,”
Science
,
319
(
5870
), pp.
1646
1649
.10.1126/science.1151771
20.
Langdon
,
T. G.
,
1994
, “
A Unified Approach to Grain Boundary Sliding in Creep and Super Plasticity
,”
Acta Metall. Mater.
,
42
(
7
), pp.
2437
2443
.10.1016/0956-7151(94)90322-0
21.
Mohamed
,
F. A.
,
2007
, “
Harper–Dorn Creep: Controversy, Requirements, and Origin
,”
Mater. Sci. Eng. A
,
463
(
1–2
), pp.
177
184
.10.1016/j.msea.2006.06.142
22.
Kassner
,
M. E.
,
Kumar
,
P.
, and
Blum
,
W.
,
2007
, “
Harper–Dorn Creep
,”
Int. Jo. Plast.
,
23
(
6
), pp.
980
1000
.10.1016/j.ijplas.2006.10.006
23.
Ginter
,
T. J.
, and
Mohamed
,
F. A.
,
2002
, “
Evidence for Dynamic Recrystallization During Harper–Dorn Creep
,”
Mater. Sci. Eng.: A
,
322
(
1–2
), pp.
148
152
.10.1016/S0921-5093(01)01127-3
24.
Li
,
J. C.
,
2002
, “
Impression Creep and Other Localized Tests
,”
Mater. Sci. Eng. A
,
322
(
1–2
), pp.
23
42
.10.1016/S0921-5093(01)01116-9
25.
German
,
R. M.
,
2010
, “
Coarsening in Sintering: Grain Shape Distribution, Grain Size Distribution, and Grain Growth Kinetics in Solid-Pore Systems
,”
Crit. Rev. Solid State Mater. Sci.
,
35
(
4
), pp.
263
305
.10.1080/10408436.2010.525197
You do not currently have access to this content.