Abstract

Phase change materials (PCMs) can provide thermal buffering to systems that experience transient heat loads, including electronics and optoelectronics packaging. Placing the PCM in the primary path of heat rejection decreases the thermal resistance between the heat source and the PCM volume, but increases the total thermal resistance between the heat source and heat sink. In systems that operate in both steady-state and transient regimes, this introduces tradeoffs between cooling performance in these distinct regimes. Employing a conductive finite volume model, Parapower, we investigate those tradeoffs considering the impact of adding a layer of gallium (Ga), a low melting point metal, and a layer of copper (Cu) between a planar heat source and a convective boundary condition heatsink. We demonstrate: (1) side-by-side comparisons of latent (Ga) and sensible (Cu) heat storage layers must consider different layer thicknesses to account for the different thermal storage mechanisms, (2) for short periods of time, conditions exist in which a PCM outperforms a traditional heat sink for transient thermal buffering at an equivalent steady-state temperature rise, and (3) under these conditions, the Ga layer is approximately an order of magnitude thinner than the equivalent Cu, leading to significant mass and volume savings.

References

1.
Johnson
,
R. W.
,
Evans
,
J. L.
,
Jacobsen
,
P.
,
Thompson
,
J. R.
, and
Christopher
,
M.
,
2004
, “
The Changing Automotive Environment: High-Temperature Electronics
,”
IEEE Trans. Electron. Packag. Manuf.
,
27
(
3
), pp.
164
176
.10.1109/TEPM.2004.843109
2.
de Bock
,
H. P.
,
Huitink
,
D.
,
Shamberger
,
P.
,
Lundh
,
J. S.
,
Choi
,
S.
,
Niedbalski
,
N.
, and
Boteler
,
L.
,
2020
, “
A System to Package Perspective on Transient Thermal Management of Electronics
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
041111
.10.1115/1.4047474
3.
Raghavan
,
A.
,
Luo
,
Y.
,
Chandawalla
,
A.
,
Papaefthymiou
,
M.
,
Pipe
,
K. P.
,
Wenisch
,
T. F.
, and
Martin
,
M. M. K.
,
2013
, “
Designing for Responsiveness With Computational Sprinting
,”
IEEE Micro
,
33
(
3
), pp.
8
15
.10.1109/MM.2013.51
4.
Evans
,
A. G.
,
He
,
M. Y.
,
Hutchinson
,
J. W.
, and
Shaw
,
M.
,
2001
, “
Temperature Distribution in Advanced Power Electronics Systems and the Effect of Phase Change Materials on Temperature Suppression During Power Pulses
,”
ASME J. Electron. Packag.
,
123
(
3
), pp.
211
217
.10.1115/1.1370376
5.
Lu
,
T. J.
,
2000
, “
Thermal Management of High Power Electronics With Phase Change Cooling
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2245
2256
.10.1016/S0017-9310(99)00318-X
6.
Ling
,
Y.-Z.
,
Zhang
,
X.-S.
,
Wang
,
F.
, and
She
,
X.-H.
,
2020
, “
Performance Study of Phase Change Materials Coupled With Three-Dimensional Oscillating Heat Pipes With Different Structures for Electronic Cooling
,”
Renewable Energy
,
154
, pp.
636
649
.10.1016/j.renene.2020.03.008
7.
Boteler
,
L.
,
Fish
,
M.
,
Berman
,
M.
, and
Wang
,
J.
,
2019
, “
Understanding Trade-Offs of Phase Change Materials for Transient Thermal Mitigation
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, Las Vegas, NV, May 28–31, pp.
870
877
.10.1109/ITHERM.2019.8757253
8.
Hasnain
,
S. M.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manag.
,
39
(
11
), pp.
1127
1138
.10.1016/S0196-8904(98)00025-9
9.
Krishnan
,
S.
, and
Garimella
,
S. V.
,
2004
, “
Thermal Management of Transient Power Spikes in Electronics—Phase Change Energy Storage or Copper Heat Sinks?
,”
ASME J. Electron. Packag.
,
126
(
3
), pp.
308
316
.10.1115/1.1772411
10.
Rehman
,
Tauseef-ur.
,
Ali
,
H. M.
,
Saieed
,
A.
,
Pao
,
W.
, and
Ali
,
M.
,
2018
, “
Copper Foam/PCMs Based Heat Sinks: An Experimental Study for Electronic Cooling Systems
,”
Int. J. Heat Mass Transfer
,
127
, pp.
381
393
.10.1016/j.ijheatmasstransfer.2018.07.120
11.
Kinkelin
,
C.
,
Lips
,
S.
,
Soupremanien
,
U.
,
Remondière
,
V.
,
Dijon
,
J.
,
Le Poche
,
H.
,
Ollier
,
E.
,
Zegaoui
,
M.
,
Rolland
,
N.
,
Rolland
,
P.-A.
,
Lhostis
,
S.
,
Descouts
,
B.
,
Kaplan
,
Y.
, and
Lefèvre
,
F.
,
2017
, “
Theoretical and Experimental Study of a Thermal Damper Based on a CNT/PCM Composite Structure for Transient Electronic Cooling
,”
Energy Convers. Manag.
,
142
, pp.
257
271
.10.1016/j.enconman.2017.03.034
12.
Ren
,
Q.
,
Guo
,
P.
, and
Zhu
,
J.
,
2020
, “
Thermal Management of Electronic Devices Using Pin-Fin Based Cascade Microencapsulated PCM/Expanded Graphite Composite
,”
Int. J. Heat Mass Transfer
,
149
, p.
119199
.10.1016/j.ijheatmasstransfer.2019.119199
13.
Arshad
,
A.
,
Jabbal
,
M.
,
Sardari
,
P. T.
,
Bashir
,
M. A.
,
Faraji
,
H.
, and
Yan
,
Y.
,
2020
, “
Transient Simulation of Finned Heat Sinks Embedded With PCM for Electronics Cooling
,”
Therm. Sci. Eng. Prog.
,
18
, p.
100520
.10.1016/j.tsep.2020.100520
14.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2005
, “
Numerical Investigation of a PCM-Based Heat Sink With Internal Fins
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3689
3706
.10.1016/j.ijheatmasstransfer.2004.10.042
15.
Barako
,
M. T.
,
Lingamneni
,
S.
,
Katz
,
J. S.
,
Liu
,
T.
,
Goodson
,
K. E.
, and
Tice
,
J.
,
2018
, “
Optimizing the Design of Composite Phase Change Materials for High Thermal Power Density
,”
J. Appl. Phys.
,
124
(
14
), p.
145103
.10.1063/1.5031914
16.
Ge
,
H.
,
Li
,
H.
,
Mei
,
S.
, and
Liu
,
J.
,
2013
, “
Low Melting Point Liquid Metal as a New Class of Phase Change Material: An Emerging Frontier in Energy Area
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
331
346
.10.1016/j.rser.2013.01.008
17.
Gonzalez-Nino
,
D.
,
Boteler
,
L. M.
,
Ibitayo
,
D.
,
Jankowski
,
N. R.
,
Urciuoli
,
D.
,
Kierzewski
,
I. M.
, and
Quintero
,
P. O.
,
2018
, “
Experimental Evaluation of Metallic Phase Change Materials for Thermal Transient Mitigation
,”
Int. J. Heat Mass Transfer
,
116
, pp.
512
519
.10.1016/j.ijheatmasstransfer.2017.09.039
18.
Shamberger
,
P. J.
, and
Bruno
,
N. M.
,
2020
, “
Review of Metallic Phase Change Materials for High Heat Flux Transient Thermal Management Applications
,”
Appl. Energy
,
258
, p.
113955
.10.1016/j.apenergy.2019.113955
19.
Boteler
,
L. M.
, and
Miner
,
S. M.
,
2017
, “
Power Packaging Thermal and Stress Model for Quick Parametric Analyses
,”
ASME
Paper No. IPACK2017-74130.10.1115/IPACK2017-74130
20.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
,
1992
, “
A General Enthalpy Method for Modeling Solidification Processes
,”
Metall. Trans. B
,
23
(
5
), pp.
651
664
.10.1007/BF02649725
21.
Boteler
,
L. M.
, and
Miner
,
S. M.
,
2018
, “
Comparison of Thermal and Stress Analysis Results for a High Voltage Module Using FEA and a Quick Parametric Analysis Tool
,”
ASME
Paper No. IPACK2018-8394.10.1115/IPACK2018-8394
22.
Boteler
,
L.
, and
Smith
,
A.
,
2013
, “
3D Thermal Resistance Network Method for the Design of Highly Integrated Packages
,”
ASME
Paper No. HT2013-17575.10.1115/HT2013-17575
23.
Deckard
,
M.
,
Shamberger
,
P.
,
Fish
,
M.
,
Berman
,
M.
,
Wang
,
J.
, and
Boteler
,
L.
,
2019
, “
Convergence and Validation in ParaPower: A Design Tool for Phase Change Materials in Electronics Packaging
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
IEEE
, Las Vegas, NV, May 28–31, pp.
878
885
.10.1109/ITHERM.2019.8757334
24.
Harris
,
G. L.
,
1995
,
Properties of Silicon Carbide
,
Inspec
,
London
.
25.
Levinshtein
,
M. E.
,
Rumyantsev
,
S. L.
, and
Shur
,
M. S.
,
2001
,
Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe
,
Wiley
,
New York
.
26.
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Liley
,
P. E.
,
Thermal Conductivity of Selected Materials
, Vol.
8
,
US Department of Commerce, National Bureau of Standards
,
Washington, DC
, p.
180
.
27.
Jensen
,
J. E.
,
Stewart
,
R. G.
,
Tuttle
,
W. A.
, and
Brechna
,
H.
,
1980
,
Brookhaven National Laboratory Selected Cryogenic Data Notebook: Sections I-IX
, BNL-10200-R (Vol. 1),
Brookhaven National Laboratory
, Upton, NY.https://www.bnl.gov/magnets/staff/gupta/cryogenic-data-handbook/index.htm
28.
National Center for Biotechnology Information, 2021, “PubChem Compound Summary for CID 5360835, Gallium,” National Center for Biotechnology Information, Bethesda, MD, accessed May 19, 2021, https://pubchem.ncbi.nlm.nih.gov/compound/Gallium
29.
Bergman
,
T. L.
, and
Incropera
,
F. P.
, eds.,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.