Abstract

Sintered copper nanoparticles are being considered as alternatives to solder and/or sintered silver in different applications. Like for the alternatives, the interpretation of accelerated fatigue test results does however require modeling, typically involving prediction of stresses and strains versus time and temperature based on constitutive relations. This poses a challenge as the inelastic deformation properties depend strongly on both the initial particles and details of the processing, i.e., unlike for solder general constitutive relations are not possible. This work provides a mechanistic description of the early transient creep of relevance in cycling, including effects of sintering parameters and subsequent oxidation. Inelastic deformation is dominated by diffusion, rather than dislocation motion. Generalized constitutive relations are provided to the extent that quantitative modeling of a specific structure only requires the measurement of a single creep curve for that.

References

1.
Lu
,
M.
,
Shih
,
D. Y.
,
Lauro
,
P.
,
Goldsmith
,
C.
, and
Henderson
,
D.
,
2008
, “
Effect of Sn Grain Orientation on Electromigration Degradation Mechanism in High Sn-Based Pb-Free Solders
,”
Appl. Phys. Lett.
,
92
(
21
), p.
211909
.10.1063/1.2936996
2.
Ouyang
,
F. Y.
,
Hsu
,
H.
,
Su
,
Y. P.
, and
Chang
,
T. C.
,
2012
, “
Electromigration Induced Failure on Lead-Free Micro Bumps in Three-Dimensional Integrated Circuits Packaging
,”
J. Appl. Phys.
,
112
(
2
), p.
023505
.10.1063/1.4737154
3.
Chang
,
Y. W.
,
Chen
,
C.
,
Chang
,
T. C.
,
Zhan
,
C. J.
,
Juang
,
J. Y.
, and
Huang
,
A. T.
,
2014
, “
Fast Phase Transformation Due to Electromigration of 18 μm Microbumps in Three-Dimensional Integrated-Circuit Integration
,”
Mater. Lett.
,
137
, pp.
136
138
.10.1016/j.matlet.2014.08.156
4.
Li
,
M.
,
Li
,
Z.
,
Xiao
,
Y.
, and
Wang
,
C.
,
2013
, “
Rapid Formation of Cu/Cu3Sn/Cu Joints Using Ultrasonic Bonding Process at Ambient Temperature
,”
Appl. Phys. Lett.
,
102
(
9
), p.
094104
.10.1063/1.4794684
5.
Lin
,
Y. M.
,
Zhan
,
C. J.
,
Juang
,
J. Y.
,
Lau
,
J. H.
,
Chen
,
T. H.
,
Lo
,
R.
,
Kao
,
M.
,
Tian
,
T.
, and
Tu
,
K. N.
,
2011
, “
Electromigration in Ni/Sn Intermetallic Micro Bump Joint for 3D IC Chip Stacking
,” IEEE 61st Electronic Components and Technology Conference (
ECTC
),
IEEE
,
Lake Buena Vista, FL
, May 31–June 3, pp.
351
357
.10.1109/ECTC.2011.5898537
6.
Liang
,
Y. C.
,
Chen
,
C.
, and
Tu
,
K. N.
,
2012
, “
Side Wall Wetting Induced Void Formation Due to Small Solder Volume in Microbumps of Ni/SnAg/Ni Upon Reflow
,”
ECS Solid State Lett.
,
1
(
4
), pp.
P60
P62
.10.1149/2.002204ssl
7.
Njuki
,
M.
,
Thekkut
,
S.
,
Das
,
R.
,
Shahane
,
N.
,
Thompson
,
P.
,
Mirpuri
,
K.
,
Borgesen
,
P.
, and
Dimitrov
,
N.
,
2022
, “
Understanding and Preventing Cu–Sn Micro Joint Defects Through Design and Process Control
,”
J. Appl. Electrochem.
,
52
(
2
), pp.
259
271
.10.1007/s10800-021-01630-5
8.
Njuki
,
M.
,
Thekkut
,
S.
,
Sivasubramony
,
R.
,
Greene
,
C. M.
,
Shahane
,
N.
,
Thompson
,
P.
,
Mirpuri
,
K.
,
Borgesen
,
P.
, and
Dimitrov
,
N.
,
2022
, “
Enhanced Voiding in Cu-Sn Micro Joints
,”
Mater. Res. Bull.
,
150
, p.
111759
.10.1016/j.materresbull.2022.111759
9.
Tang
,
Y.
,
Chang
,
Y.
, and
Chen
,
K. N.
,
2012
, “
Wafer-Level Cu–Cu Bonding Technology
,”
Microelectron. Reliab.
,
52
(
2
), pp.
312
320
.10.1016/j.microrel.2011.04.016
10.
Sosa
,
R. A.
,
Nguyen
,
M. K. L.
,
Tummala
,
R.
,
Antoniou
,
A.
, and
Smet
,
V.
,
2019
, “
Cu Pillar With Nanocopper Caps: The Next Interconnection Node Beyond Traditional Cu Pillar
,” IEEE 69th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28–31, pp.
655
660
.10.1109/ECTC.2019.00104
11.
Zinn
,
A.
,
Stoltenberg
,
R.
,
Fried
,
A.
,
Chang
,
J.
,
Elhawary
,
A.
,
Beddow
,
J.
, and
Chiu
,
F.
,
2012
, “
NanoCopper Based Solder-Free Electronic Assembly Material
,”
Nanotechnology
,
2
, pp.
71
74
.https://www.circuitinsight.com/pdf/nano_copper_ipc.pdf
12.
Zürcher
,
J.
,
Yu
,
K.
,
Schlottig
,
G.
,
Baum
,
M.
,
Taklo
,
M. M. V.
,
Wunderle
,
B.
,
Warszyński
,
P.
, and
Brunschwiler
,
T.
,
2015
, “
Nanoparticle Assembly and Sintering Towards All-Copper Flip Chip Interconnects
,” 2015 IEEE 65th Electronic Components and Technology Conference (
ECTC
),
IEEE
,
San Diego, CA
, May 26–29, pp.
1115
1121
.10.1109/ECTC.2015.7159734
13.
Jianfeng
,
Y.
,
Guisheng
,
Z.
,
Anming
,
H.
, and
Zhou
,
Y. N.
,
2011
, “
Preparation of PVP Coated Cu NPs and the Application for Low-Temperature Bonding
,”
J. Mater. Chem.
,
21
(
40
), pp.
15981
15986
.10.1039/c1jm12108a
14.
Ishizaki
,
T.
, and
Watanabe
,
R.
,
2012
, “
A New One-Pot Method for the Synthesis of Cu Nanoparticles for Low Temperature Bonding
,”
J. Mater. Chem.
,
22
(
48
), pp.
25198
25206
.10.1039/c2jm34954j
15.
Chen
,
T.
, and
Siow
,
K.
,
2021
, “
Comparing the Mechanical and Thermal-Electrical Properties of Sintered Copper (Cu) and Sintered Silver (Ag) Joints
,”
J. Alloys Compd.
,
866
, p.
158783
.10.1016/j.jallcom.2021.158783
16.
Riva
,
R.
,
Buttay
,
C.
,
Allard
,
B.
, and
Bevilacqua
,
P.
,
2013
, “
Migration Issues in Sintered-Silver Die Attaches Operating at High Temperature
,”
Microelectron. Reliab.
,
53
(
9–11
), pp.
1592
1596
.10.1016/j.microrel.2013.07.103
17.
Sivasubramony
,
R. S.
,
Kokash
,
M. Z.
,
Thekkut
,
S.
,
Shahane
,
N.
,
Thompson
,
P.
,
Mirpuri
,
K.
,
Kawana
,
Y.
,
Greene
,
C. M.
, and
Borgesen
,
P.
,
2022
, “
Fatigue of Copper Nanoparticle Based Joints and Bonds
,”
ASME J. Electron. Packag.
,
144
(
1
), p.
011007
.10.1115/1.4050871
18.
Hsieh
,
M.-C.
,
Yu
,
C.-K.
, and
Wu
,
S.-T.
,
2010
, “
Thermo-Mechanical Simulative Study for 3D Vertical Stacked IC Packages With Spacer Structures
,” 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), Santa Clara, CA, Feb. 21–25, pp.
47
54
.10.1109/STHERM.2010.5444314
19.
Wang
,
Y.
,
Watanabe
,
A. O.
,
Ogura
,
N.
,
Raj
,
P. M.
, and
Tummala
,
R.
,
2020
, “
Sintered Nanocopper Paste for High-Performance 3D Heterogeneous Package Integration
,”
J. Electron. Mater.
,
49
(
11
), pp.
6737
6745
.10.1007/s11664-020-08399-x
20.
Cheng
,
B.
, and
Ngan
,
A. H.
,
2013
, “
The Crystal Structures of Sintered Copper Nanoparticles: A Molecular Dynamics Study
,”
Int. J. Plasticity
,
47
, pp.
65
79
.10.1016/j.ijplas.2013.01.006
21.
Thekkut
,
S.
,
Kokash
,
M. Z.
,
Sivasubramony
,
R. S.
,
Kawana
,
Y.
,
Mirpuri
,
K.
,
Shahane
,
N.
,
Thompson
,
P.
,
Greene
,
C. M.
, and
Borgesen
,
P.
,
2022
, “
Inelastic Deformation of Copper Nanoparticle Based Joints and Bonds
,”
ASME J. Electron. Packag.
,
144
(
3
), p.
031009
.10.1115/1.4051728
22.
Zhu
,
H.
,
1996
, “
Sintering Processes of Two Nanoparticles: A Study by Molecular Dynamics Simulations
,”
Philos. Mag. Lett.
,
73
(
1
), pp.
27
33
.10.1080/095008396181073
23.
Darveaux
,
R.
, and
Banerji
,
K.
,
1992
, “
Constitutive Relations for Tin-Based-Solder Joints
,”
Proceedings 42nd Electronic Components & Technology Conference
, San Diego, CA, May 18–20, pp.
538
551
.10.1109/33.206925
24.
Motalab
,
M.
,
Cai
,
Z.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2012
, “
Determination of Anand Constants for SAC Solders Using Stress-Strain or Creep Data
,”
13th Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
IEEE
,
San Diego, CA
, May 30–June 1, pp.
910
922
.10.1109/ITHERM.2012.6231522
25.
Wang
,
G. Z.
,
Cheng
,
Z. N.
,
Becker
,
K.
, and
Wilde
,
J.
,
2001
, “
Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys
,”
ASME J. Electron. Packag.
,
123
(
3
), pp.
247
253
.10.1115/1.1371781
26.
Rodgers
,
B.
,
Flood
,
B.
,
Punch
,
J.
, and
Waldron
,
F.
,
2005
, “
Determination of the Anand Viscoplasticity Model Constants for SnAgCu
,”
ASME
Paper No. IPACK2005-73352.10.1115/IPACK2005-73352
27.
Khatibi
,
G.
,
Lederer
,
M.
,
Byrne
,
E.
,
Kotas
,
A.
,
Weiss
,
B.
, and
Ipser
,
H.
,
2013
, “
Characterization of Stress-Strain Response of Lead-Free Solder Joints Using a Digital Image Correlation Technique and Finite-Element Modeling
,”
J. Electron. Mater.
,
42
(
2
), pp.
294
303
.10.1007/s11664-012-2276-2
28.
Cocke
,
D. L.
,
Schennach
,
R.
,
Hossain
,
M. A.
,
Mencer
,
D. E.
,
McWhinney
,
H.
,
Parga
,
J. R.
,
Kesmez
,
M.
,
Gomes
,
J. A. G.
, and
Mollah
,
M. Y.
,
2005
, “
The Low-Temperature Thermal Oxidation of Copper, Cu3O2, and Its Influence on Past and Future Studies
,”
Vaccum
,
79
(
1–2
), pp.
71
83
.10.1016/j.vacuum.2005.01.010
29.
Gattinoni
,
C.
, and
Michaelides
,
A.
,
2015
, “
Atomistic Details of Oxide Surfaces and Surface Oxidation: The Example of Copper and Its Oxides
,”
Surf. Sci. Rep.
,
70
(
3
), pp.
424
447
.10.1016/j.surfrep.2015.07.001
30.
Castrejón-Sánchez
,
Víctor-Hugo
,
A. C.
,
Solís
,
R.
,
López
,
C.
,
Encarnación-Gomez
,
F. M.
,
Morales
,
O. S.
,
Vargas
,
J. E.
,
Mastache-Mastache
., and
G. V.
,
Sánchez
,
2019
, “
Thermal Oxidation of Copper Over a Broad Temperature Range: Towards the Formation of Cupric Oxide (CuO)
,”
Mater. Res. Express
,
6
(
7
), p.
075909
.10.1088/2053-1591/ab1662
31.
Lenglet
,
M.
,
Kartouni
,
K.
,
Machefert
,
J.
,
Claude
,
J. M.
,
Steinmetz
,
P.
,
Beauprez
,
E.
,
Heinrich
,
J.
, and
Celati
,
N.
,
1995
, “
Low Temperature Oxidation of Copper: The Formation of CuO
,”
Mater. Res. Bull.
,
30
(
4
), pp.
393
403
.10.1016/0025-5408(95)00025-9
32.
Zhou
,
G.
,
Wang
,
L.
, and
Yang
,
J. C.
,
2005
, “
Effects of Surface Topology on the Formation of Oxide Islands on Cu Surfaces
,”
J. Appl. Phys.
,
97
(
6
), p.
063509
.10.1063/1.1861147
33.
Feng
,
Z.
,
Marks
,
C. R.
, and
Barkatt
,
A.
,
2003
, “
Oxidation-Rate Excursions During the Oxidation of Copper in Gaseous Environments at Moderate Temperatures
,”
Oxid. Metals
,
60
(
5/6
), pp.
393
408
.10.1023/A:1027331605417
34.
Fujita
,
K.
,
Ando
,
D.
,
Uchikoshi
,
M.
,
Mimura
,
K.
, and
Isshiki
,
M.
,
2013
, “
New Model for Low-Temperature Oxidation of Copper Single Crystal
,”
Appl. Surface Sci.
,
276
, pp.
347
358
.10.1016/j.apsusc.2013.03.096
35.
Anand
,
L.
,
1982
, “
Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures
,”
ASME J. Eng. Mater. Technol.
,
104
(
1
), pp.
12
17
.10.1115/1.3225028
36.
Yang
,
F.
, and
Li
,
J. C.
,
2013
, “
Impression Test—A Review
,”
Mater. Sci. Eng. R Rep.
,
74
(
8
), pp.
233
253
.10.1016/j.mser.2013.06.002
37.
Louchet
,
F.
, and
Duval
,
P.
,
2009
, “
Andrade Creep Revisited
,”
Int. J. Mater. Res.
,
100
(
10
), pp.
1433
1439
.10.3139/146.110189
38.
Alghoul
,
T.
,
Wentlent
,
L.
,
Sivasubramony
,
R.
,
Greene
,
C.
,
Thompson
,
P.
, and
Borgesen
,
P.
,
2020
, “
Diffusion Creep of Realistic SnAgCu Solder Joints at Times and Stresses of Relevance to Thermal Fatigue
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
2
), pp.
288
295
.10.1109/TCPMT.2019.2929051
39.
Zheng
,
H.
,
Berry
,
D.
,
Ngo
,
K. D.
, and
Lu
,
G.-Q.
,
2014
, “
Chip-Bonding on Copper by Pressureless Sintering of Nano Silver Paste Under Controlled Atmosphere
,”
Packag. Manuf. Technol. IEEE Trans. Compon.
,
4
(
3
), p.
37
.10.1109/TCPMT.2013.2296882
40.
Mohan
,
K.
,
Shahane
,
N.
,
Liu
,
R.
,
Smet
,
V.
, and
Antoniou
,
A.
,
2018
, “
A Review of Nanoporous Metals in Interconnects
,”
JOM
,
70
(
10
), pp.
2192
2204
.10.1007/s11837-018-3081-z
41.
Schnabl
,
K.
,
Wentlent
,
L.
,
Mootoo
,
K.
,
Khasawneh
,
S.
,
Zinn
,
A. A.
,
Beddow
,
J.
,
Hauptfleisch
,
E.
,
Blass
,
D.
, and
Borgesen
,
P.
,
2014
, “
Nanocopper Based Solder-Free Electronic Assembly
,”
J. Electron. Mater.
,
43
(
12
), pp.
4515
4521
.10.1007/s11664-014-3478-6
42.
Borgesen
,
P.
,
Wentlent
,
L.
,
Alghoul
,
T.
,
Sivasubramony
,
R.
,
Yadav
,
M.
,
Thekkut
,
S.
,
Cuevas
,
J.
, and
Greene
,
C.
,
2019
, “
A Mechanistic Model of Damage Evolution in Lead Free Solder Joints Under Combinations of Vibration and Thermal Cycling With Varying Amplitudes
,”
Microelectron. Reliab.
,
95
, pp.
65
73
.10.1016/j.microrel.2019.02.001
You do not currently have access to this content.