This paper describes the application of computational fluid dynamics (CFD) to the prediction of the characteristics of high-momentum vertical and horizontal flames in ambient air flows. The KIVA-II code has been modified by extending the range of boundary conditions and by the addition of the following: a version of the coherent flame-sheet model, Tesner’s soot generation and Magnussen’s soot oxidation model, and an implementation of the discrete transfer radiation model. To assess the accuracy of the complete model for prediction purposes, results are compared with experimental data. Predictions of temperature and flame profiles are in good agreement with data while predictions of radiative heat transfer are not entirely satisfactory.

1.
Ahmed, T., Plee, S. L., and Myers, J. P., 1981, “Computation of Nitric Oxide and Soot Emissions from Steady Turbulent Spray and Jets,” General Motors, Research Report EN31.
2.
Amesden, A. A., O’Rourke, P. J., and Butler, T. D., 1989, “KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos, NM, LA-11560-MS.
3.
Askari
A.
,
Bullman
S. J.
,
Fairweather
M.
, and
Swaffield
F.
,
1990
, “
The Concentration Field of a Turbulent Jet in a Cross-Wind
,”
Combustion Science and Technology
, Vol.
73
, pp.
463
478
.
4.
Becker
H. A.
, and
Yamazaki
S.
,
1978
, “
Entrainment, Momentum Flux and Temperature in Vertical Free Turbulent Diffusion Flames
,”
Combustion and Flame
, Vol.
33
, pp.
123
149
.
5.
Becker, H. A., Liang, D., and Downey, C. I., 1981, “Effect of Burner Orientation and Ambient Airflow on Geometry of Turbulent Free Diffusion Flames,” Eighteenth Symposium (International) on Combustion, The Combustion Institute, pp. 1061–1071.
6.
Beeri
Z.
,
Blunsdon
C. A.
,
Malalasekera
W. M. G.
, and
Dent
J. C.
,
1994
, “
The Numerical Study of High Momentum Reactive Jets
,”,
Fire, Combustion and Hazardous Waste Processing
1994 International Mechanical Engineering Congress and Exposition, Chicago, IL, ASME HTD-Vol.
296
, eds., S. Acharya, K. Annamalai, C. Presser, and R. D. Skocypec, pp.
89
97
.
7.
Bilger
R. W.
,
1976
, “
The Structure of Diffusion Flames
,”
Combustion Science and Technology
, Vol.
13
, pp.
155
170
.
8.
Bilger
R. W.
,
1977
, “
Reaction Rates in Diffusion Flames
,”
Combustion and Flame
, Vol.
30
, pp.
277
284
.
9.
Bilger, R. W., Twenty-Second Symposium (international) on Combustion, The Combustion Institute, 1988, pp. 475–488.
10.
Birch
A. D.
,
Brown
D. R.
,
Fairweather
M.
, and
Hargrave
G. K.
,
1989
, “
An Experimental Study of a Turbulent Natural Gas Jet In a Cross-Flow
,”
Combustion Science and Technology
, Vol.
66
, pp.
217
232
.
11.
Blunsdon, C. A., Malalasekera, W. M. G., and Dent, J. C., 1992, “Application of the Discrete Transfer Model of Thermal Radiation in a CFD Simulation of Diesel Engine Combustion and Heat Transfer,” SAE International Fuels and Lubricants Meeting and Exposition, San Francisco, CA, October 19–22.
12.
Blunsdon
C. A.
,
Beeri
Z.
,
Malalasekera
W. M. G.
, and
Dent
J. C.
,
1994
, “
Comprehensive Modeling of Turbulent Flames With the Coherent Flame-Sheet Model—Part I: Buoyant Diffusion Flames
,”
ASME JOURNAL OF ENERGY RESOURCES TECHNOLOGY
, Vol.
118
, Mar., pp.
65
71
also, International Mechanical Engineering Congress and Exposition, Chicago, IL, ASME HTD-Vol. 296, Fire, Combustion and Hazardous Waste Processing, eds., S. Acharya, K. Annamalai, C. Presser, and R. D. Skocypec.
13.
Botros, P. E., and Brzustowski, T. A., 1978, “An Experimental and Theoretical Study of the Turbulent Diffusion Flame in Cross-Flow,” Seventeenth Symposium (International) on Combustion, The Combustion Institute, pp. 389–398.
14.
Chamberlain
G. A.
,
1987
, “
Developments in Design Methods for Predicting Thermal Radiation from Flares
,”
Chemical Engineering Research and Design
, Vol.
65
, pp.
299
309
.
15.
Cook
D. K.
,
Fairweather
M.
,
Hammonds
J.
, and
Hughes
D. J.
,
1987
, “
Size and Radiation Characteristics of Natural Gas Flares. Part I—Field Scale Experiments
,”
Chemical Engineering Research and Design
, Vol.
65
, No.
4
, pp.
310
317
.
16.
Cheng, W. K., 1983, “Calculation of Turbulent Diffusion Flame Using the Coherent Flame Sheet Model,” AIAA Paper 83-1322.
17.
Cheng
W. K.
,
1984
, “
Calculation of Turbulent Diffusion Flame Using the Coherent Flame Sheet Model
,”
AIAA Journal
, Vol.
22
, No.
11
, pp.
1694
1696
.
18.
Cheng, W. K., Lai, M. C., and Chue, T. H., 1991, “Multi-dimensional Modelling of Gas Turbine Combustion Using a Flame Sheet Model in KIVA II,” AIAA Paper 91-0414.
19.
Darabiha, N., Giovangigli, V., Troupe, A., Candle, S. M., and Esposito, E., 1989, “Coherent Flame Description of Turbulent Premixed Ducted Flames,” Turbulent Reactive Flows, Lecture Notes in Engineering, Vol. 40, eds., R. Borghi and S. N. B. Murthy, Springer-Verlag.
20.
Fairweather
M.
,
Jones
W. P.
, and
Marquis
A. J.
,
1988
, “
Predictions of the Concentration Field of a Turbulent Jet in a Cross-Flow
,”
Combustion Science and Technology
, Vol.
62
, pp.
61
76
.
21.
Fairweather
M.
,
Jones
W. P.
,
Lindstedt
R. P.
, and
Marquis
A. J.
,
1991
, “
Predictions of a Turbulent Reacting Jet in a Cross-Wind
,”
Combustion and Flame
, Vol.
84
, No.
3–4
, pp.
361
375
.
22.
Fairweather
M.
,
Jones
W. P.
, and
Lindstedt
R. P.
,
1992
, “
Predictions of Radiative Transfer from a Turbulent Reacting Jet in a Cross-Wind
,”
Combustion and Flame
, Vol.
89
, No.
1
, pp.
45
63
.
23.
Galant, S., Grouset, D., Martinez, G., Micheau, P., and Allemand, J. B., 1984, “Three-Dimensional Steady Parabolic Calculations of Large Scale Methane Turbulent Diffusion Flames to Predict Flare Radiation Under Cross-Wind Conditions,” Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 531–540.
24.
Gosman, A. D., Lockwood, F. C., and Syed, S. A., 1976, “Prediction of a Horizontal Free Turbulent Diffusion Flame,” Sixteenth Symposium (International) on Combustion, The Combustion Institute, pp. 1543–1555.
25.
Gore
J. P.
, and
Jian
C. Q.
,
1991
, “
Trajectories of Horizontal Buoyant Free Jet Flames
,”
ASME/JSME Thermal Engineering Proceedings
, Vol.
5
, pp.
127
138
, ASME 1991.
26.
Hoehne, V. O., and Luce, R. G., 1970, “The Effect of Velocity, Temperature, and Molecular Weight on Flammability Limits in Wind-Blown Jets of Hydrocarbon Gases,” American Petroleum Institute Preprint, No. 56–70, pp. 1057–1081.
27.
Hottel, H. C., and Sarofim, A. F., 1967, Radiative Transfer, McGraw Hill, New York, NY.
28.
Jordinson, R., 1958, “Flow in a Jet Directed Normal to the Wind,” Aeronautical Research Council Technical Report and Memoranda No. 3074.
29.
Kamotani
Y.
, and
Greber
I.
,
1972
, “
Experiments on a Turbulent Jet in a Cross Flow
,”
AIAA Journal
, Vol.
10
, No.
11
, pp.
1425
1429
.
30.
Kalghatgi
G. T.
,
1981
, “
Blow-Out Stability of Gaseous Jet Diffusion Flames: Part I: In Still Air
,”
Combustion Science and Technology
, Vol.
26
, pp.
233
239
.
31.
Liew
S. K.
,
Bray
K. N. C.
, and
Moss
J. B.
,
1981
, “
A Laminar Flamelet Model of Turbulent Non-premixed Combustion
,”
Combustion Science and Technology
, Vol.
27
, pp.
69
73
.
32.
Lockwood, F. C., and Shah, N. G., 1981, “A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures,” Eighteenth Symposium (International) on Combustion, The Combustion Institute, pp. 1405–1414.
33.
Magnussen, B. F., and Hjertager, B. H., 1976, “On Mathematical Modelling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion,” Sixteenth Symposium (International) on Combustion, The Combustion Institute, pp. 719–729.
34.
Marble, F. E., and Broadwell, J. E., 1977, “The Coherent Flame Model for Turbulent Chemical Reactions,” Project SQUID Technical Report TRW-9-PU.
35.
Nikjooy
M.
,
So
R. M. C.
, and
Peck
R. E.
,
1988
, “
Modelling of Jet-and Swirl-stabilised Reacting Flows in Axisymmetric Combustors
,”
Combustion Science and Technology
, Vol.
58
, pp.
135
153
.
36.
Roth
K. R.
,
Fearn
R. L.
, and
Thakur
S. S.
,
1992
, “
Evaluation of a Navier-Stokes Prediction of a Jet in a Crossflow
,”
Journal of Aircraft
, Vol.
29
, No.
2
, pp.
185
193
.
37.
Stoy, R. L., and Ben-Haim, Y., 1973, “Turbulent Jets in a Confined Crossflow,” ASME Journal of Fluids Engineering, Dec., pp. 551–556.
38.
Tesner
P. A.
,
Snegiriova
T. D.
, and
Knorre
V. G.
,
1971
, “
Kinetics of Dispersed Carbon Formation
,”
Combustion and Flame
, Vol.
17
, pp.
253
260
.
39.
Truelove, J., 1976, “A Mixed Grey Model for Flame Radiation,” UK AERE, Harwell Report HL76/3448.
40.
Wagner, H. G., 1981, “Soot Formation—An Overview,” Particulate Carbon Formation During Combustion. eds., D. C. Siegla and G. W. Smith. Plenum Press.
This content is only available via PDF.
You do not currently have access to this content.