Previous work by one of the authors entailed modeling of a packed bed thermal energy storage system utilizing phase-change materials (PCM). A principal conclusion reached is that the use of a single family of phase-change storage material may not in fact produce a thermodynamically superior system relative to one utilizing sensible heat storage material. This paper describes the model constructed for the high-temperature thermal energy storage system utilizing multiple families of phasechange materials and presents results obtained in the exercise of the model. Other factors investigated include the effect on system performance due to the thermal mass of the containment vessel wall and variable temperature of the flue gas entering the packed bed during the storage process. The results obtained indicate efficiencies for the system utilizing the five PCM families exceeding those for the single PCM family by as much as 13 to 26 percent. It was also found that the heat transfer to the containment vessel wall could have a significant detrimental effect on system performance.

1.
Adebiyi
G. A.
,
1991
, “
A Second-Law Study on Packed Bed Energy Storage Systems Utilizing Phase-Change Materials
,”
ASME Journal of Solar Energy Engineering
, Vol.
113
, pp.
146
156
.
2.
Beasley
D. E.
,
Ramanarayanan
C.
, and
Torab
H.
,
1989
, “
Thermal Response of a Packed Bed of Spheres containing a Phase-Change Material
,”
International Journal of Energy Research
, Vol.
13
, pp.
253
265
.
3.
Beasley
D. E.
, and
Clark
J. A.
,
1984
, “
Transient Response of a Packed Bed for Thermal Energy Storage
,”
International Journal of Heat and Mass Transfer
, Vol.
27
, No.
9
, pp.
1659
1669
.
4.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, New York, NY.
5.
Coberly
C. A.
, and
Marshall
W. R.
,
1951
, “
Temperature Gradients in Gas Streams Flowing Through Fixed Granular Beds
,”
Chemical Engineering Progress
, Vol.
47
, pp.
141
150
.
6.
Danckwerts
P. V.
,
1953
, “
Continuous Flow Systems: Distributions of Residence Times
,”
Chemical Engineering Science
, Vol.
2
, No.
1
, pp.
1
13
.
7.
Farid
M. M.
, and
Kansawa
A.
,
1989
, “
Thermal Performance Of a Heat Storage Module Using PCMs With Different Melting Temperatures: Mathematical Modeling
,”
ASME Journal of Solar Energy Engineering
, Vol.
111
, pp.
152
157
.
8.
Farid
M. M.
,
Kim
Y.
, and
Kansawa
A.
,
1990
, “
Thermal Performance Of a Heat Storage Module Using PCMs With Different Melting Temperatures: Experimental
,”
ASME Journal of Solar Energy Engineering
, Vol.
112
, pp.
125
131
.
9.
Felix, J. R., 1951, Ph.D thesis, University of Wisconsin, June.
10.
Gluck, A., Tamme, R., and Streuber, C., “Testing and Evaluation of Na2SO4/SiO2 TES Material in Technical Scale,” private communication.
11.
Handley
D.
, and
Heggs
P. J.
,
1968
, “
Momentum and Heat Transfer Mechanism in Regular Shaped Packing
,”
Transactions of the Institution of Chemical Engineers
, Vol.
46
, pp.
T 251-T 264
T 251-T 264
.
12.
Hanrattry
T. J.
,
1954
, “
Nature of Wall Heat Transfer Coefficient in Packed Beds
,”
Chemical Engineering Science
, Vol.
3
, pp.
209
214
.
13.
Kaguei
S.
,
Shiozawa
B.
, and
Wakao
N.
,
1977
, “
Dispersion-Concentric Model for Packed Bed Heat Transfer
,”
Chemical Engineering Science
, Vol.
32
, pp.
507
513
.
14.
Krane
R. J.
,
1987
, “
A Second Law Analysis of the Optimum Design and Operation of Thermal Energy Storage Systems
,”
International Journal of Heat and Mass Transfer
, Vol.
30
, No.
1
, pp.
43
57
.
15.
Matsuo
T.
,
Fukagawa
M.
,
Fujimoto
M.
,
Ujisuga
S.
,
Shimada
Y.
,
Narita
K.
, and
Maekawa
T.
,
1991
, “
Analytical and Experimental Study of Thermal Characteristics for High Temperature Sensible Heat Storage System
,”
Proceedings of the ASME JSME Thermal Engineering Joint Conference 1991
, Vol.
3
, pp.
351
358
.
16.
Notter
W.
,
Lechner
Th.
,
Groß
U.
, and
Hahne
E.
,
1993
, “
Thermophysical Properties of the Composite Ceramic-Salt System (SiO2/Na2SO4)
,”
Thermochimica Acta
, Vol.
218
, pp.
455
463
.
17.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., New York, NY.
18.
Petri, R. J., Ong, E. T., and Claar, T. D., 1983, “High-Temperature Salt/Ceramic Thermal Storage Phase-Change Media,” Proceedings of the 18th Intersociety Energy Conversion Engineering Conference (IECEC), pp. 1769–1774.
19.
Schmidt, F. W., and Willmott, A. J., 1981, Thermal Energy Storage and Regeneration, Hemisphere Publishing Corp., New York, NY.
20.
Schumann
T. E. W.
,
1929
, “
Heat Transfer: A Liquid Flowing Through a Porous Prism
,”
Journal of Franklin Institute
, Vol.
208
, pp.
405
416
.
21.
Schwartz
C. E.
, and
Smith
J. M.
,
1953
, “
Flow Distribution in Packed Beds
,”
Industrial Engineering and Chemistry
, Vol.
45
, No.
6
, pp.
1209
1218
.
22.
Solomon
A. D.
,
1979
, “
Melt Time and Heat Flux for a Simple PCM Body
,”
Solar Energy
, Vol.
22
, pp.
251
257
.
23.
Standart
G.
,
1968
, “
The Thermodynamic Significance of the Danckwerts’ Boundary Conditions
,”
Chemical Engineering Science
, Vol.
23
, pp.
645
655
.
24.
Wakao
N.
,
Kaguei
S.
, and
Funazkri
,
1979
, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds
,”
Chemical Engineering Science
, Vol.
34
, pp.
325
336
.
25.
Yagi
S.
, and
Kunii
D.
,
1957
, “
Studies on Effective Thermal Conductivities in Packed Beds
,”
A.I.Ch.E, Journal
, Vol.
3
, No.
3
, pp.
373
381
.
26.
Yagi
S.
, and
Kunii
D.
,
1960
, “
Studies on Heat Transfer Near Wall Surfaces in Packed Beds
,”
A.I.Ch.E, Journal
, Vol.
6
, No.
1
, pp.
97
104
.
27.
Yagi
S.
,
Kunii
D.
, and
Wakao
N.
,
1960
, “
Studies on Axial Effective Thermal Conductivities in Packed Beds
,”
A.I.Ch.E, Journal
, Vol.
6
, No.
4
, pp.
543
546
.
This content is only available via PDF.
You do not currently have access to this content.