Studies of wavy stratified and stratified/atomization two-phase flow in horizontal pipes are outlined. Notable features of this flow regime include the appearance of disturbance waves, the atomization onset and the drastic change of the gas/liquid interface profile from flat to “concave.” Liquid-to-wall shear stress tends to decrease circumferentially. A computational procedure for predicting main flow characteristics, which takes into account the above results in its design relations, is first assessed with detailed experimental data and is then combined with a CFD code, aiming at enhancing the predictive capability.
Issue Section:
Technical Papers
1.
Badie
, S.
, Hale
, C. P.
, Lawrence
, C. J.
, and Hewitt
, G. F.
, 2000
, “Pressure Gradient and Holdup in Horizontal Two-Phase Gas-Liquid Flows with Low Liquid Loading
,” Int. J. Multiphase Flow
, 26
, pp. 1525
–1543
.2.
Vlachos
, N. A.
, Paras
, S. V.
, and Karabelas
, A. J.
, 1999
, “Prediction of Holdup, Axial Pressure Gradient and Wall Shear Stress in Wavy Stratified and Stratified/Atomization Gas/Liquid Flow
,” Int. J. Multiphase Flow
, 25
(2
), pp. 365
–376
.3.
Agrawal
, S. S.
, Gregory
, G. A.
, and Govier
, G. W.
, 1973
, “An Analysis of Horizontal Stratified Two Phase Flow in Pipes
,” Can. J. Chem. Eng.
, 51
, pp. 280
–286
.4.
Taitel
, Y.
, and Dukler
, A. E.
, 1976
, “A Model for Predicting Flow Regime Transitions in Horizontal and near Horizontal Gas-Liquid Flow
,” AIChE J.
, 22
, pp. 47
–55
.5.
Cheremisinoff
, N. P.
, and Davis
, E. J.
, 1979
, “Stratified Turbulent-Turbulent Gas-Liquid Flow
,” AIChE J.
, 25
(1
), pp. 48
–56
.6.
Fisher, S. A., and Pearce, D. L., 1979, “A Theoretical Model for Describing Horizontal Annular Flows,” Proc. Two-phase Momentum, Heat and Mass transfer in Chemical, Process and Energy Engineering Systems, Durst et al., eds., 1, pp. 327–337.
7.
Chen
, X. T.
, Cai
, X. D.
, and Brill
, J. P.
, 1997
, “Gas-Liquid Stratified-Wavy Flow in Horizontal Pipelines
,” J. Energy Resour. Technol.
, 119
, pp. 209
–216
.8.
Vlachos
, N. A.
, Paras
, S. V.
, and Karabelas
, A. J.
, 1997
, “Liquid-to-Wall Shear Stress Distribution in Stratified/Atomization Flow
,” Int. J. Multiphase Flow
, 23
(5
), pp. 845
–863
.9.
Andritsos
, N.
, and Hanratty
, T. J.
, 1987
, “Influence of Interfacial Waves in Stratified Gas-Liquid Flows
,” AIChE J.
, 33
(3
), pp. 444
–454
.10.
Kowalski
, J. E.
, 1987
, “Wall and Interfacial Shear Stress in Stratified Flow in a Horizontal Pipe
,” AIChE J.
, 33
(2
), pp. 274
–281
.11.
Hart
, J.
, Hamersma
, P. J.
, and Fortuin
, J. M. H.
, 1989
, “Correlations Predicting Frictional Pressure Drop and Liquid Holdup during Horizontal Gas-Liquid Pipe Flow with a Small Liquid Holdup
,” Int. J. Multiphase Flow
, 15
(6
), pp. 947
–964
.12.
Vlachos, N. A., 1997, “Studies of Stratified/Atomization Two-Phase Flow in a Horizontal Pipe,” Ph.D. thesis, Aristotle University of Thessaloniki, Thessaloniki-Greece.
13.
Paras
, S. V.
, Vlachos
, N. A.
, and Karabelas
, A. J.
, 1994
, “Liquid Layer Characteristics in Stratified-Atomization Flow
,” Int. J. Multiphase Flow
, 20
(5
), pp. 939
–956
.14.
Grolman, E., and Fortuin, J. M. H., 1995, “The Wavy-to-Slug Flow Transition in Inclined Gas-Liquid Pipe Flow,” Proc. Two-Phase Flow Modelling and Experimentation, Rome, pp. 1363–1370.
15.
Andritsos, N., 1986, “Effect of Pipe Diameter and Liquid Viscosity on Horizontal Stratified Flow,” Ph.D. thesis, University of Illinois, Urbana.
16.
Paras
, S. V.
, Vlachos
, N. A.
, and Karabelas
, A. J.
, 1998
, “LDA Measurements of Local Velocities Inside the Gas Phase in Horizontal Stratified/Atomization Two-Phase Flow
,” Int. J. Multiphase Flow
, 24
(4
), pp. 651
–661
.17.
Jayanti
, S.
, Wilkes
, N. S.
, Clarke
, D. S.
, and Hewitt
, G. F.
, 1990
, “The Prediction of Turbulent Flows over Roughened Surfaces and its Application to Interpretation of Mechanisms of Horizontal Annular Flow
,” Proc. R. Soc. London, Ser. A
, 431
, pp. 71
–88
.18.
Dykhno
, L. A.
, Williams
, L. R.
, and Hanratty
, T. J.
, 1994
, “Maps of Mean Gas Velocity for Stratified Flows with and without Atomization
,” Int. J. Multiphase Flow
, 20
, pp. 691
–702
.19.
Flores
, A. G.
, Crowe
, K. E.
, and Griffith
, P.
, 1995
, “Gas-Phase Secondary Flow in Horizontal, Stratified and Annular Two-Phase Flow
,” Int. J. Multiphase Flow
, 21
, pp. 207
–221
.20.
Hoogendoorn
, C. J.
, 1959
, “Gas-Liquid Flow in Horizontal Pipes
,” Chem. Eng. Sci.
, 9
, pp. 205
–217
.21.
Spedding, P. L., and Hand, N. P., 1995, “Prediction of Holdup and Frictional Pressure Loss in Two Phase Co-current Flow,” Proc. Two-Phase Flow Modelling and Experimentation, Rome, pp. 573–581.
22.
Majeed-A
, G. H.
, 1996
, “Liquid Holdup in Horizontal Two-Phase Gas-Liquid Flow
,” J. Pet. Sci. Eng.
, 15
(2–4
), pp. 271
–280
.23.
Srichai, S., 1994, “High Pressure Separated Two-phase Flow,” Ph.D. thesis, Department of Chemical Engineering, Imperial College, University of London, London.
24.
Vlachos, N. A., Paras, S. V., Mouza, A. A., and Karabelas, A. J., 1999, “Studies of Stratified/Atomization Gas-Liquid Flow in Horizontal pipes,” Proc. Two-Phase Flow Modelling and Experimentation, G. P. Celata et al., eds., Edizioni ETS, Pisa, 2, pp. 739–745.
25.
Versteeg, H. K., and Malalasekera, W., 1995, An Introduction to CFD. The Finite Volume Method, Longman, London.
Copyright © 2003
by ASME
You do not currently have access to this content.