Several empirical assumptions deriving from observations and measurements of the physical processes are involved in the modeling of Solid Oxide Fuel Cells (SOFCs). An insight of the main models proposed in the literature is given to present the characteristics and limits of these assumptions for the various existing configurations. The basic structure and equations of the models are discussed in details, focusing particularly on the parameters that are to be set to achieve reliability and accuracy. According to this discussion, a zero-dimensional model for a tubular Solid Oxide Fuel Cell (SOFC) is then presented. The model demonstrates good capability in predicting SOFC characteristic curves as they appear in the literature.
Issue Section:
Technical Papers
Keywords:
solid oxide fuel cells
1.
Lubelli, F., and Massardo, A. F., 1998, “Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT). Part A: Cell Model and Cycle Thermodynamic Analysis,” ASME Paper No. 98-GT-577.
2.
Costamagna
, P.
, Magistri
, L.
, and Massardo
, A. F.
, 2001
, “Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,” J. Power Sources
, 96
, pp. 352
–368
.3.
Bessette
, N. F.
, Wepfer
, W. J.
, and Winnick
, J.
, 1995
, “A Mathematical Model of a Solid Oxide Fuel Cell
,” J. Electrochem. Soc.
, 142
, pp. 3792
–3800
.4.
Haynes, C., and Wepfer, W. J., 2000, “Enhancing Fuel Cell/Gas Turbine Power Systems via Reduced Fuel Utilization Within Indirect Internally Reforming (IIR) Fuel Cell Stacks,” Proc. ASME Advanced Energy Systems Division, New York, 40, pp. 311–328.
5.
Tanaka
, K.
, Wen
, C.
, and Yamada
, Y.
, 2000
, “Design and Evaluation of Combined Cycle System With Solid Oxide Fuel Cell and Gas Turbine
,” Fuel
, 79
, pp. 1493
–1507
.6.
Taccani, R., 2001, “Modellizzazione di cicli ibridi ad alta efficienza basati su celle a combustibile ad alta temperature e microturbine (Models for High Efficiency Hybrid Cycles Based on High Temperature Fuel Cells and Microturbines),” Proc. X Convegno-Tecnologie e Sistemi Energetici Complessi (10th Conference on Complex Energy Systems and Technologies), Genova, pp. 265–274 (in Italian).
7.
Iwata
, M.
, Hikosaka
, T.
, Morita
, M.
, Iwanari
, T.
, Ito
, K.
, Onda
, K.
, Esaki
, Y.
, Sakaki
, Y.
, and Nagata
, S.
, 2000
, “Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions
,” Solid State Ionics
, 132
, pp. 297
–308
.8.
Setoguchi
, T.
, Okamoto
, K.
, Educhi
, K.
, and Arai
, H.
, 1992
, “Effects of Anode Material and Fuel on Anodic Reaction of Solid Oxide Fuel Cells
,” J. Electrochem. Soc.
, 139
, pp. 2875
–2880
.9.
Mogensen, M., and Lingegaard, T., 1993, “The Kinetics of Hydrogen Oxidation on a Ni-YSZ SOFC Electrode at 1000°C,” Proc. Solid oxide fuel cells III, S. C. Singal, and H. Iwahara, eds., PV 93-4, pp. 484–493, The Electrochemical Society Proceedings Series, Pennington, NJ.
10.
Mogensen, M., 1993, “Electrode Kinetics of SOFC Anodes and Cathodes,” Proc. 14th Riso International Symposium on Material Science, F. W. Poulsen et al., eds., pp. 117–135, Riso National Laboratory, Roskilde, Denmark.
11.
Misuzaki
, J.
, Tagawa
, H.
, Saito
, T.
, Kamitani
, K.
, Yamamura
, T.
, Hirano
, K.
, Ehara
, S.
, Takagi
, T.
, Hikita
, T.
, Ippomatsu
, M.
, Nagakawa
, S.
, and Hashimoto
, K.
, 1994
, “Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H2-H2O Atmospheres
,” J. Electrochem. Soc.
, 141
, pp. 2129
–2134
.12.
Yamamura, T., Tagawa, H., Saito, T., Misuzaki, J., Kamitani, K., Hirano, K., Ehara, S., Takagi, T., Hishinuma, Y., Sasaki, H., Sogi, T., Nakamura, Y., and Hashimoto, K., 1995, “Reaction Kinetics at the Nickel Pattern Electrode on YSZ and its Dependence on Temperature,” Proc. Solid oxide fuel cells IV, M. Dokiya et al., eds., PV 95-1, pp. 741–749, The Electrochemical Society Proceedings Series, Pennington, NJ.
13.
Costamagna
, P.
, and Honegger
, K.
, 1998
, “Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,” J. Electrochem. Soc.
, 145
, pp. 3995
–4007
.14.
Achenbach
, E.
, 1994
, “Three Dimensional and Time Dependent Simulation of a Planar SOFC Stack
,” J. Power Sources
, 49
, pp. 333
–348
.15.
Ahmed
, S.
, McPheeters
, C.
, and Kumar
, R.
, 1991
, “Thermal-Hydraulic Model of a Monolithic Solid Oxide Fuel Cell
,” J. Electrochem. Soc.
, 138
, pp. 2712
–2718
.16.
Bessette
, N. F.
, and Wepfer
, W. J.
, 1995
, “A Mathematical Model of a Tubular Solid Oxide Fuel Cell
,” ASME J. Energy Resour. Technol.
, 117
, pp. 43
–49
.17.
Dunbar, W. R., 1983, “Computer Simulation of a High-Temperature Solid Oxide Fuel Cell,” M.S. thesis, Marquette University, Milwaukee, WI.
18.
Wepfer
, W. J.
, and Woosley
, M. H.
, 1984
, “High Temperature Fuel Cells for Power Generation
,” Energ. Convers. Manage.
, 25
, pp. 477
–485
.19.
Gaggioli, R. A., and Dunbar, W. R., 1990, “Modeling of Solid Electrolyte Fuel Cells,” Proc. FLOWERS’90, S. Stecco, ed., Pergamon Press, Oxford.
20.
Boersma
, R. J.
, Sammes
, N. M.
, and Fee
, C. J.
, 2000
, “Losses Resulting From in-Plane Electricity Conduction in Tubular Solid Oxide Fuel Cell
,” Solid State Ionics
, 135
, pp. 493
–502
.21.
Campanari
, S.
, 2001
, “Thermodynamic Model and Parametric Analysis of a Tubular SOFC Module
,” J. Power Sources
, 92
, pp. 26
–34
.22.
Hirschenhofer, J. H., Stauffer, D. B., Engleman, R. R., and Klett, M. G., 1998, Fuel Cell Handbook (4th edition), FETC, Morgantown, WV.
23.
Engineering Equation Solver User’s Guide, 1999, F. Chart Software, Middleton, Wisconsin, USA.
24.
Matlab User’s Manual, 2001, The MathWorks Inc., Natick, MA.
Copyright © 2004
by ASME
You do not currently have access to this content.