This paper presents an analysis of the charge and discharge processes in a latent thermal energy storage cell. An individual cell is analyzed to study how its behavior affects the performance of a thermal energy storage system. The analysis considers the exchange of thermal energy between a thermal energy storage cell and a source or sink of thermal energy. Two cases are considered, (i) a process in which the phase change material melts and freezes when a constant and uniform temperature is imposed at the lower surface of the cell, and (ii) a process in which the phase change material melts and freezes when a fluid with a constant inlet temperature flows under the cell. The effect of the aspect ratio of the energy storage cell is analyzed in detail as a possible method to enhance heat transfer and improve performance of the thermal energy storage system. The results include, for different aspect ratios of the storage cell, the evolution of the solid-liquid interface, the rates of melting and solidification, the rate of energy storage and the total amount of energy storage.

1.
Mithal, P., and Yang, K. T., 1994, “A Phase Change Material-Based Thermal Energy Storage Option for Household Refrigerators,” ASME 94-WA/HT-5, pp. 1–8.
2.
Hasnain
,
S.
,
Alawaji
,
S.
,
Al-Ibrahim
,
A.
, and
Smiai
,
M.
,
1999
, “
Applications of Thermal Energy Storage in Saudi Arabia
,”
Int. J. Energy Res.
,
23
, pp.
117
124
.
3.
Van den Branden
,
G.
,
Hesius
,
M.
, and
D’Haeseleer
,
W.
,
1999
, “
Comparisons of Heat Storage Systems Employing Sensible and Latent Heat
,”
Int. J. Energy Res.
,
23
, pp.
605
624
.
4.
Marshall, R., 1978, “Natural Convection Effects in Rectangular Enclosures Containing a Phase Change Material,” Thermal Storage and Heat Transfer in Solar Energy Systems, ASME, pp. 61–69.
5.
Hale
,
N. W.
, and
Viskanta
,
R.
,
1980
, “
Solid-Liquid Phase-Change Heat Transfer and Interface Motion in Materials Cooled or Heated from Above or Below
,”
Int. J. Heat Mass Transfer
,
23
, pp.
283
292
.
6.
De Lucia
,
M.
, and
Bejan
,
A.
,
1990
, “
Thermodynamics of Energy Storage by Melting Due to Conduction or Natural Convection
,”
J. Sol. Energy Eng.
,
112
, pp.
110
116
.
7.
De Lucı´a
,
M.
, and
Bejan
,
A.
,
1991
, “
Thermodynamics of Phase-Change Energy Storage: The Effects of Liquid Superheating During Melting, and Irreversibility During Solidification
,”
J. Sol. Energy Eng.
,
113
, pp.
2
10
.
8.
Be´nard
,
C.
,
Gobin
,
D.
, and
Martinez
,
F.
,
1985
, “
Melting in Rectangular Enclosures: Experimental and Numerical Simulations
,”
J. Heat Transfer
,
107
, pp.
794
803
.
9.
Zhang
,
Z.
, and
Bejan
,
A.
,
1990
, “
Solidification in Presence of High Rayleigh Number Convection in an Enclosure Cooled from The Side
,”
Int. J. Heat Mass Transfer
,
33
, pp.
661
671
.
10.
Sekhar, K., Sriram, S., and Anand, N. K., 1988, “A Simplied Model for the Analysis of a Phase-Change Material Based, Thermal Energy Storage System,” Heat Recovery Syst. CHP, 8, 247–254, Pergamon, New York.
11.
Aceves-Saborio
,
S. M.
,
Nakamura
,
H.
, and
Reistad
,
G. M.
,
1994
, “
The Effect of Freezing and Melting on The Efficiency of Latent Heat Storage Systems
,”
J. Chem. Eng. Jpn.
,
27
, pp.
779
784
.
12.
Aceves-Saborio
,
S. M.
,
Nakamura
,
H.
, and
Reistad
,
G. M.
,
1994
, “
Optimum Efficiencies and Phase Change Temperatures in Latent Heat Storage Systems
,”
ASME J. Energy Resour. Technol.
,
116
, pp.
79
86
.
13.
Aceves
,
S. M.
,
Nakamura
,
H.
,
Reistad
,
G. M.
, and
Martinez-Frias
,
J.
,
1998
, “
Optimization of a Class of Latent Thermal Energy Storage Systems With Multiple Phase Change Materials
,”
ASME J. Sol. Energy Eng.
,
120
, pp.
14
19
.
14.
Hernandez-Guerrero
,
A.
,
Aceves
,
S. M.
,
Cabrera-Ruiz
,
E.
, and
Baltazar-Cervantes
,
J. C.
,
1999
, “
Modeling of the Charge and Discharge Processes in Energy Storage Cells
,”
Energy Conversion and Management
,
40
, pp.
1753
1763
.
15.
Aceves-Saborio, S., Hernandez-Guerrero, A., and Nakamura, H., 1993, “Heat Transfer and Exergy Analysis of the Charge Process of a Heat Storage Cell,” Thermodynamics and the Design, Analysis and Improvement of Energy Systems ASME Vol.30/HTD, Vol. 266, edited by H. J. Richter, pp. 73–80, 1993.
16.
Cabeza
,
L. F.
,
Mehling
,
H.
,
Hiebler
,
S.
, and
Ziegler
,
F.
,
2002
, “
Heat transfer Enhancement in Water when Used as PCM in Thermal Energy Storage
,”
Appl. Therm. Eng.
,
22
, pp.
1141
1151
.
17.
Sarma
,
A.
,
Sharma
,
S. D.
, and
Buddhi
,
D.
,
2002
, “
Accelerated Thermal Cycle Test of Acetamide, Stearic Acid and Paraffin Wax for Solar Thermal Latent Heat Storage Applications
,”
Energy Conversion and Management
,
43
, pp.
1923
1930
.
18.
Hu
,
X.
, and
Zhang
,
Y.
,
2002
, “
Novel Insight and Numerical Analysis of Convective Heat Transfer Enhancement with Microencapsulated Phase Change Material Slurries: Laminar Flow in a Circular Tube with Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3163
3172
.
19.
Sari
,
A.
, and
Kaygusuz
,
K.
,
2002
, “
Thermal Performance of Palmitic Acid as a Phase Change Energy Storage Material
,”
Energy Conversion and Management
,
43
, pp.
863
876
.
20.
Saito
,
A.
,
Okawa
,
S.
,
Shintani
,
T.
, and
Iwamoto
,
R.
,
2001
, “
On the Heat Removal Characteristics and the Analytical Model of a Thermal Energy Storage Capsule Using Gelled Glauber’s Salt as the PCM
,”
Int. J. Heat Mass Transfer
,
44
, pp.
4693
4701
.
21.
Zivkovic
,
B.
, and
Fujii
,
I.
,
2001
, “
An Analysis of Isothermal Phase Change of Phase Change Material Within Rectangular and Cylindrical Containers
,”
Sol. Energy
,
70
, pp.
51
61
.
22.
Ismail
,
K.
, and
Abugderah
,
M.
,
2000
, “
Performance of a Thermal Storage System of the Vertical Tube Type
,”
Energy Conv. Management
,
41
, pp.
1165
1190
.
23.
Pinelli, M., and Piva, S., 2001, “Energy Storage with Solid/Liquid Phase Change in Presence of Natural Convection,” Paper AES-23643, ASME AES-Vol. 41, ASME Book No. I00520.
24.
Omer
,
S.
,
Riffat
,
S.
, and
Ma
,
X.
,
2001
, “
Experimental Investigation of a Thermoelectric Refrigeration System Employing a Phased Change Material Integrated with Thermal Diode (Thermosyphons)
,”
Appl. Therm. Eng.
,
21
, pp.
1265
1271
.
25.
He
,
B.
, and
Setterwall
,
F.
,
2002
, “
Technical Grade Paraffin Waxes as Phase Change Materials for Cool Thermal Storage and Cool Storage Systems Capital Cost Estimation
,”
Energy Conversion Management
,
43
, pp.
1709
1723
.
26.
Landau, H. G., “Heat Conduction in a Melting Solid,” Quarterly of Applied Mathematics, 1950, Vol. 8, pp. 81–94.
27.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, NY.
You do not currently have access to this content.