The gradual decline in the oil production rate of water flooded reservoirs leads to decrease in the profit of water flooding system. Although cyclic water injection (CWI) was introduced to reduce the descending trend of oil production in water flooded reservoirs, it must be optimized based upon the process parameters. The objective of this study is to develop all process design criteria based upon the real-time monitoring of CWI process in a naturally fractured reservoir having five producing wells and five injector wells completed in an Arab carbonated formation containing light crude oil (API = 42 deg). For this aim, a small pilot oil field was selected with water injection facilities and naturally producing oil wells and all data were collected from the field tests. During a five years' field test, the primary observations at the onset of shutdown periods of the water injection system revealed a repeatable significant enhancement in oil production rate by a factor of plus 5% leading us to assess the application of CWI. This paper represents the significant parameters of pressure and productivity affected during CWI in naturally fractured carbonate reservoirs based upon a dual porosity generalized compositional model. The results hopefully introduce other oil producer companies to the potential of using CWI to increase oil production in conventional water injection systems. The results also outline situations where such applications would be desirable.

References

1.
Xu
,
J.
,
Guo
,
C.
,
Wei
,
M.
, and
Jiang
,
R.
,
2015
, “
Impact of Parameters' Time Variation on Waterflooding Reservoir Performance
,”
J. Pet. Sci. Eng.
,
126
, pp.
181
189
.
2.
Moghadasi
,
J.
,
Jamialahmadi
,
M.
,
Müller-Steinhagen
,
H.
, and
Sharif
,
A.
,
2004
, “
Formation Damage Due to Scale Formation in Porous Media Resulting From Water Injection
,” SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, LO, Feb. 18--20, SPE Paper No.
SPE-86524-MS
.
3.
Jackson
,
M. D.
,
Valvatne
,
P. H.
, and
Blunt
,
M. J.
,
2003
, “
Prediction of Wettability Variation and Its Impact on Flow Using Pore-to Reservoir-Scale Simulations
,”
J. Pet. Sci. Eng.
,
39
(
3–4
), pp.
231
246
.
4.
Reuvers
,
N.
, and
Golombok
,
M.
,
2009
, “
Shear Rate and Permeability in Water Flooding
,”
Transp. Porous Med
,
79
(
2
), pp.
249
253
.
5.
Abdalkadeer
,
K. M.
,
Dunn-Norman
,
S.
,
Senturk
,
E.
,
Rivera
,
N.
,
Prada
,
M.
, and
Goodman
,
H. E.
,
2009
, “
Changes in Near Wellbore Stress and Fracture Gradient Due to Cold Water injection in a Sirte Basin Field, Libya
,” SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, United Arab Emirates, Oct. 19–21, SPE Paper No.
SPE-125310-MS
.
6.
Ahmadloo
,
F.
,
Asghari
,
K.
, and
Renouf
,
G.
,
2010
, “
A New Diagnostic Tool for Performance Evaluation of Heavy Oil Waterfloods: Case Study of Western Canadian Heavy Oil Reservoirs
,”
Western North America Regional Meeting
, Anaheim, CA, May 26–30, SPE Paper No.
SPE-113856-PA
.
7.
Kulathu
,
S.
,
Dandekar
,
A. Y.
,
Patil
,
S.
, and
Khataniar
,
S.
,
2013
, “
Low Salinity Cyclic Water Floods for Enhanced Oil Recovery on Alaska North Slope
,” SPE Asia Pacific Oil & Gas Conference and Exhibition
, Jakarta, Indonesia, Oct. 22–24, SPE Paper No.
SPE-165812-MS
.
8.
Surguchev
,
L.
,
Giske
,
N. H.
,
Kollbotn
,
L.
, and
Shchipanov
,
A.
,
2008
, “
Cyclic Water Injection Improves Oil Production in Carbonate Reservoir
,”
International Petroleum Exhibition and Conference
, Abu Dhabi, United Arab Emirates, Nov. 3–6, SPE Paper No.
SPE-117836-MS
.
9.
Anganaei
,
H.
,
Pourabdollah
,
K.
, and
Rostami
,
A.
,
2014
, “
Experimental Improvement of Nano-Enhanced Oil Recovery Using Nano-Emulsions
,”
Arabian J. Sci. Eng.
,
39
(
8
), pp.
6453
6461
.
10.
Qi
,
M.
,
Li
,
M.
,
Guo
,
T.
,
Liu
,
C.
,
Gao
,
S.
, and
Tang
,
S.
,
2018
, “
Influence of Oriented Perforation Design on Refracture Reorientation: Simulation and Experiment
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082903
.
11.
Prasun
,
S.
, and
Wojtanowicz
,
A. K.
,
2018
, “
Determination and Implication of Ultimate Water Cut in Well-Spacing Design for Developed Reservoirs With Water Coning
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082902
.
12.
Li
,
A.
,
Ren
,
X.
,
Fu
,
S.
,
Lv
,
J.
,
Li
,
X.
,
Liu
,
Y.
, and
Lu
,
Y.
,
2018
, “
The Experimental Study on the Flooding Regularities of Various CO2 Flooding Modes Implemented on Ultralow Permeability Cores
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072902
.
13.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Petrol. Sci. Eng.
,
166
, pp.
900
905
.
14.
Qiao
,
C.
,
Li
,
L.
,
Johns
,
R. T.
, and
Xu
,
J.
,
2015
, “
A Mechanistic Model for Wettability Alteration by Chemically Tuned Waterflooding in Carbonate Reservoirs
,”
SPE J.
,
20
(
4
), pp.
767
783
.
15.
Rui
,
Z.
,
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Nat. Gas. Sci. Eng.
,
42
, pp.
31
39
.
16.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
H.
,
2018
, “
Pressure-Transient Behavior of Multisegment Horizontal Wells With Nonuniform Production: Theory and Case Study
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
093101
.
17.
Du
,
Z.
,
Zeng
,
F.
,
Peng
,
X.
, and
Chan
,
C.
,
2016
, “
Optimizing the Pressure Decline Rate on the Cyclic Solvent Injection Process for Enhanced Heavy Oil Recovery
,”
J. Pet. Sci. Eng.
,
145
, pp.
629
639
.
18.
Ma
,
J.
,
Wang
,
X.
,
Gao
,
R.
,
Zeng
,
F.
,
Huang
,
C.
,
Tontiwachwuthikul
,
P.
, and
Liang
,
Z.
,
2016
, “
Study of Cyclic CO2 Injection for Low-Pressure Light Oil Recovery Under Reservoir Conditions
,”
Fuel
,
174
, pp.
296
306
.
19.
Wan
,
T.
,
Yu
,
Y.
, and
Sheng
,
J. J.
,
2015
, “
Experimental and Numerical Study of the EOR Potential in Liquid-Rich Shales by Cyclic Gas Injection
,”
J. Unconv. Oil Gas Resour.
,
12
, pp.
56
67
.
20.
Jensen
,
T. B.
, and
Sharma
,
M. P.
,
1989
, “
Thermal Hydraulics of Wellbores and Surface Lines During Steam/Hot Water Injection—Part I: Theoretical Model
,”
ASME J. Energy Resour. Technol.
,
111
(
2
), pp.
55
63
.
21.
Hou
,
J.
,
Xia
,
Z.
,
Li
,
S.
,
Zhou
,
K.
, and
Lu
,
N.
,
2016
, “
Operation Parameter Optimization of a Gas Hydrate Reservoir Developed by Cyclic Hot Water Stimulation With a Separated-Zone Horizontal Well Based on Particle Swarm Algorithm
,”
Energy
,
96
, pp.
581
591
.
22.
Surguchev
,
L.
,
Koundin
,
A.
,
Melberg
,
O.
,
Rolfsvag
,
T. A.
, and
Menard
,
W. P.
,
2002
, “
Cyclic Water Injection: Improved Oil Recovery at Zero Cost
,”
Pet. Geosci.
,
8
(
1
), pp.
89
95
.
23.
Qingfeng
,
Y.
,
Bingyu
,
J.
, and
Jiping
,
Y.
,
1995
, “
Mechanism of Cyclic in Waterflooding in Vertically Heterogeneous Reservoirs
,”
SPE Adv. Technol. Ser.
,
5
(
1
), pp.
24
27
.
24.
Raimondi
,
P.
,
1964
, “
Distribution of the Oil Phase Obtained Upon Imbibition of Water
,”
Soc. Pet. Eng. J.
,
4
(
1
), pp.
49
55
.
25.
Hester
,
C. T.
,
Walker
,
J. W.
, and
Sawver
,
G. H.
,
1963
, “
Oil Recovery by Imbibition Austin and Buds Water Flooding in the Formations
,”
J. Pet. Technol.
,
17
(
8
), pp.
919
925
.
26.
Mattax
,
C. C.
, and
Kyte
,
J. R.
,
1962
, “
Imbibition Oil Recovery From Fractured, Water-Drive Reservoir
,”
Soc. Pet. Eng. J.
,
2
(
2
), pp.
177
184
.
27.
Perez
,
D.
,
Salicioni
,
F.
, and
Ucan
,
S.
,
2014
, “
Cyclic Water Injection in San Jorge Gulf Basin, Argentina
,”
SPE Latin American and Caribbean Petroleum Engineering Conference
, Maraca Ibo, Venezuela, May 21–23, SPE Paper No.
SPE-169403-MS
.
28.
Saha
,
C.
, and
Anthony
,
J. H.
,
2018
, “
Real-Time Aerosol Measurements in Post-Combustion CO2 Capture Using ELPI+TM and Smooth and Sintered Collection Plates
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062001
.
29.
Kamel
,
M. A.
,
Elkatatny
,
S.
,
Mysorewala
,
M. F.
,
Al-Majed
,
A.
, and
Elshafei
,
M.
,
2018
, “
Adaptive and Real-Time Optimal Control of Stick–Slip and Bit Wear in Autonomous Rotary Steerable Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032908
.
30.
Pourabdollah
,
K.
,
2017
, “
Process Design of Matrix Acidizing by Antifouling Agents
,”
Chem. Eng. Res. Des.
,
121
, pp.
407
420
.
31.
Montaron
,
B. A.
,
Bradley
,
D. C.
,
Cooke
,
A.
,
Prouvost
,
L. P.
,
Raffn
,
A. G.
,
Vidal
,
A.
, and
Wilt
,
M.
,
2007
, “
Shapes of Flood Fronts in Heterogeneous Reservoirs and Oil Recovery Strategies
,”
SPE/EAGE Reservoir Characterization and Simulation Conference
, Abu Dhabi, United Arab Emirates, Oct. 28–31, SPE Paper No.
SPE-111147-MS
.
32.
Ershaghi
,
I.
,
2008
, “
Flood Front Tracking and Pulse Test Time Lags
,”
SPE Symposium on Improved Oil Recovery
, Tulsa, OK, Apr. 20–23, SPE Paper No.
SPE-114233-MS
.
33.
He
,
Y.
,
Cheng
,
S.
,
Li
,
L.
,
Mu
,
G.
,
Zhang
,
T.
,
Xu
,
H.
,
Qin
,
J.
, and
Yu
,
H.
,
2017
, “
Waterflood Direction and Front Characterization With Four-Step Work Flow: A Case Study in Changqing Oil Field, China
,”
SPE Reservoir Eval. Eng.
,
20
(
3
), pp.
708
725
.
34.
Khamatdinov
,
R.
,
Wang
,
X.
,
Mostafa
,
I.
, and
Chughtai
,
M. A.
,
2016
, “
Optimizing Waterflood Management by Modeling Historical Temperature of the Water Injection Front Using Distributed Temperature Sensing DTS System
,”
Abu Dhabi International Petroleum Exhibition & Conference
, Abu Dhabi, United Arab Emirates, Nov. 7–10, SPE Paper No.
SPE-183017-MS
.
35.
Pourabdollah
,
K.
, and
Mokhtari
,
B.
,
2012
, “
Application of 1H NMR in the Flow Surveillance of Oil Wells
,”
Magn. Reson. Chem.
,
50
(
3
), pp.
208
215
.
36.
Pourabdollah
,
K.
, and
Mokhtari
,
B.
,
2011
, “
Determination of Oil Wells Productivity Using Multivariate FTIR Data
,”
Spectrochim. Acta Part A
,
84
(
1
), pp.
22
24
.
37.
Pourabdollah
,
K.
, and
Mokhtari
,
B.
,
2011
, “
Flow Rate Measurement of Individual Oil Well Using Multivariate Thermal Analysis
,”
Measurement
,
44
(
10
), pp.
2028
2034
.
You do not currently have access to this content.