To evaluate the feasibility of the performance enhancement of a thermophotovoltaic (TPV) converter by using a thermoelectric generator (TEG), a new model of a combined system is established, where the TEG is attached on the backside of the TPV converter to harvest the heat produced in the TPV converter. The effects of the voltage output of the TPV converter, band gap energy of the TPV converter, dimensionless current of the TEG, and emitter temperature on the performance of the combined system are examined numerically. It is found that the performance of the TPV converter can be enhanced by using the TEG. The percentage increment of the maximum power output density is larger than that of the maximum efficiency. There are optimally working regions of the converter voltage, dimensionless current, and band gap energy. The elevated emitter temperature results in the increase of the power output density of the combined system. However, there is an optimal emitter temperature that yields the maximum efficiency of the combined system. Moreover, the TEG is not suitable to harvest the heat produced in the TPV converter when the emitter temperature is sufficiently high.

References

1.
Green
,
M. A.
,
2002
, “
Third Generation Photovoltaics: Solar Cells for 2020 and Beyond
,”
Physica E
,
14
(
1–2
), pp.
65
70
.
2.
Datas
,
A.
, and
Martí
,
A.
,
2017
, “
Thermophotovoltaic Energy in Space Applications: Review and Future Potential
,”
Sol. Energy Mater. Sol. Cells
,
161
, pp.
285
296
.
3.
Wernsman
,
B.
,
Siergiej
,
R. R.
,
Link
,
S. D.
,
Mahorter
,
R. G.
,
Palmisiano
,
M. N.
,
Wehrer
,
R. J.
,
Schultz
,
R. W.
,
Schmuck
,
G. P.
,
Messham
,
R. L.
,
Murrary
,
S.
,
Murray
,
C. S.
,
Newman
,
F.
,
Taylor
,
D.
,
DePoy
,
D. M.
, and
Rahmlow
,
T.
,
2004
, “
Greater Than 20% Radiant Heat Conversion Efficiency of a Thermophotovoltaic Radiator/Module System Using Reflective Spectral Control
,”
IEEE Trans. Electron. Devices
,
51
(
3
), pp.
512
515
.
4.
Datas
,
A.
,
2015
, “
Optimum Semiconductor Bandgaps in Single Junction and Multijunction Thermophotovoltaic Converters
,”
Sol. Energy Mater. Sol. Cells
,
134
, pp.
275
290
.
5.
Yang
,
Z.
,
Peng
,
W.
,
Liao
,
T.
,
Zhao
,
Y.
,
Lin
,
G.
, and
Chen
,
J.
,
2017
, “
An Efficient Method Exploiting the Waste Heat From a Direct Carbon Fuel Cell by Means of a Thermophotovoltaic Cell
,”
Energy Convers. Manage
,
149
(
1
), pp.
424
431
.
6.
Zenker
,
M.
,
Heinzel
,
A.
,
Stollwerck
,
G.
,
Ferber
,
J.
, and
Luther
,
J.
,
2001
, “
Efficiency and Power Density Potential of Combustion-Driven Thermophotovoltaic Systems Using GaSb Photovoltaic Cells
,”
IEEE Trans. Electron Devices
,
48
(
2
), pp.
367
376
.
7.
Crowley
,
C. J.
,
Elkouh
,
N. A.
,
Murray
,
S.
, and
Chubb
,
D. L.
,
2005
, “
Thermophotovoltaic Converter Performance for Radioisotope Power Systems
,”
Space Technology and Applications International Forum
(
STAIF
), Albuquerque, NM, Feb. 13–17, pp.
601
614
.
8.
Chaudhuri
,
T. K.
,
1992
, “
A Solar Thermophotovoltaic Converter Using Pbs Photovoltaic Cells
,”
Int. J. Energy Res.
,
16
(
6
), pp.
481
487
.
9.
Wang
,
C. A.
,
Choi
,
H. K.
,
Ransom
,
S. L.
,
Charache
,
G. W.
,
Danielson
,
L. R.
, and
DePoy
,
D. M.
,
1999
, “
High-Quantum-Efficiency 0.5 eV GaInAsSb/GaSb Thermophotovoltaic Devices
,”
Appl. Phys. Lett.
,
75
(
9
), pp.
1305
1307
.
10.
Nam
,
Y.
,
Yeng
,
Y. X.
,
Lenert
,
A.
,
Bermel
,
P.
,
Celanovic
,
I.
,
Soljačić
,
M.
, and
Wang
,
E. N.
,
2014
, “
Solar Thermophotovoltaic Energy Conversion Systems With Two-Dimensional Tantalum Photonic Crystal Absorbers and Emitters
,”
Sol. Energy Mater. Sol. Cells
,
122
, pp.
287
296
.
11.
Bernardi
,
M. P.
,
Dupré
,
O.
,
Blandre
,
E.
,
Chapuis
,
P. O.
,
Vaillon
,
R.
, and
Francoeur
,
M.
,
2015
, “
Impacts of Propagating, Frustrated and Surface Modes on Radiative, Electrical and Thermal Losses in Nanoscale-Gap Thermophotovoltaic Power Generators
,”
Sci. Rep.
,
5
(
1
), p.
11626
.
12.
Yang
,
Z.
,
Wang
,
J.
,
Chen
,
X.
, and
Lin
,
G.
,
2018
, “
Parametric Optimum Design Criteria of a Thermophotovoltaic Cell
,”
Environ. Prog. Sustainable Energy
,
37
(
1
), pp.
513
517
.
13.
Fesharaki
,
V. J.
,
Dehghani
,
M.
,
Fesharaki
,
J. J.
, and
Tavasoli
,
H.
,
2011
, “
The Effect of Temperature on Photovoltaic Cell Efficiency
,”
First International Conference on Emerging Trends in Energy Conservation (ETEC)
, Tehran, Iran, Nov. 20–21, pp.
20
21
.
14.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2009
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012401
.
15.
Schock
,
H.
,
Brereton
,
G.
,
Case
,
E.
,
D'Angelo
,
J.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Novak
,
J.
,
Nelson
,
C.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Shih
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2013
, “
Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022001
.
16.
Hendricks
,
T. J.
,
2007
, “
Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
223
231
.
17.
Lin
,
J.
,
Liao
,
T.
, and
Lin
,
B.
,
2015
, “
Performance Analysis and Load Matching of a Photovoltaic–Thermoelectric Hybrid System
,”
Energy Convers. Manage
,
105
(
15
), pp.
891
899
.
18.
Yang
,
P.
,
Zhu
,
Y.
,
Zhang
,
P.
,
Zhang
,
H. C.
,
Hu
,
Z.
, and
Zhang
,
J.
,
2014
, “
Performance Evaluation of an Alkaline Fuel Cell/Thermoelectric Generator Hybrid System
,”
Int. J. Hydrogen Energy
,
39
(
22
), pp.
11756
11762
.
19.
Van Sark
,
W.
,
2011
, “
Feasibility of Photovoltaic–Thermoelectric Hybrid Modules
,”
Appl. Energy
,
88
(
8
), pp.
2785
2790
.
20.
Dallan
,
B. S.
,
Schumann
,
J.
, and
Lesage
,
F. J.
,
2015
, “
Performance Evaluation of a Photoelectric–Thermoelectric Cogeneration Combined System
,”
Sol. Energy
,
118
, pp.
276
285
.
21.
Lin
,
W.
,
Shih
,
T. M.
,
Zheng
,
J. C.
,
Zhang
,
Y.
, and
Chen
,
J.
,
2014
, “
Coupling of Temperatures and Power Outputs in Hybrid Photovoltaic and Thermoelectric Modules
,”
Int. J. Heat Mass Transfer
,
74
, pp.
121
127
.
22.
Qiu
,
K.
, and
Hayden
,
A. C. S.
,
2012
, “
Development of a Novel Cascading TPV and TE Power Generation System
,”
Appl. Energy
,
91
(
1
), pp.
304
308
.
23.
Huen
,
P.
, and
Daoud
,
W. A.
,
2017
, “
Advances in Hybrid Solar Photovoltaic and Thermoelectric Generators
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
1295
1302
.
24.
Bjørk
,
R.
,
2015
, “
The Universal Influence of Contact Resistance on the Efficiency of a Thermoelectric Generator
,”
J. Electron. Mater.
,
44
(
8
), pp.
2869
2876
.
25.
Hapenciuc
,
C. L.
,
Borca-Tasciuc
,
T.
, and
Mihailescu
,
I. N.
,
2017
, “
The Relationship Between the Thermoelectric Generator Efficiency and the Device Engineering Figure of Merit Zd,eng. The Maximum Efficiency η Max
,”
AIP Adv.
,
7
(
4
), p.
045007
.
26.
Datas
,
A.
, and
Algora
,
C.
,
2010
, “
Detailed Balance Analysis of Solar Thermophotovoltaic Systems Made Up of Single Junction Photovoltaic Cells and Broadband Thermal Emitters
,”
Sol. Energy Mater. Sol. Cells
,
94
(
12
), pp.
2137
2147
.
27.
Fuqiang
,
C.
,
Yanji
,
H.
, and
Chao
,
Z.
,
2014
, “
A Physical Model for Thermoelectric Generators With and Without Thomson Heat
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011201
.
28.
Chen
,
X.
,
Pan
,
Y.
, and
Chen
,
J.
,
2010
, “
Performance and Evaluation of a Fuel Cell–Thermoelectric Generator Combined System
,”
Fuel Cells
,
10
(
6
), pp.
1164
1170
.
29.
Riffat
,
S. B.
,
Ma
,
X.
, and
Wilson
,
R.
,
2006
, “
Performance Simulation and Experimental Testing of a Novel Thermoelectric Heat Pump System
,”
Appl. Therm. Eng.
,
26
(
5–6
), pp.
494
501
.
30.
Ahiska
,
R.
, and
Ahiska
,
K.
,
2010
, “
New Method for Investigation of Parameters of Real Thermoelectric Modules
,”
Energy Convers. Manage.
,
51
(
2
), pp.
338
345
.
31.
Mansouri
,
N.
,
Timm
,
E. J.
,
Schock
,
H. J.
,
Sahoo
,
D.
, and
Kotrba
,
A.
,
2016
, “
Development of a Circular Thermoelectric Skutterudite Couple Using Compression Technology
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052003
.
32.
Chen
,
J.
, and
Wu
,
C.
,
2000
, “
Analysis on the Performance of a Thermoelectric Generator
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
61
63
.
33.
Datas
,
A.
, and
Algora
,
C.
,
2013
, “
Global Optimization of Solar Thermophotovoltaic Systems
,”
Prog. Photovoltaics Res. Appl.
,
21
(
5
), pp.
1040
1055
.
You do not currently have access to this content.