A new drilling method called coiled-tubing partial underbalanced drilling (CT-PUBD) was proposed in this paper. The method is not only able to enhance rate of penetration (ROP) just like the conventional underbalanced drilling technology but can also maintain borehole stability in the upper formation. In the new method, the wellbore pressure system is divided into two parts by a packer: (1) normal pressure system in the upper formation used to balance formation pressure and maintain borehole stability and (2) an underbalanced pressure system in the annulus near the bit used to enhance ROP. Because the pressure system and the circulation system are different, the cuttings transportation process of the method is different from the conventional way. Therefore, it is essential to study how to carry cuttings away efficiently. The flow field and cuttings distribution in the annulus near the bit were analyzed by computational fluid dynamic (CFD) methods. Cuttings transportation trajectory, velocity distribution, and cuttings concentration distribution were obtained under different holes’ parameters of the backflow device (including holes number, diameter, distance, and angle) and different drilling fluid viscosities. The results show that these parameters all have influence on cuttings carrying efficiency, and the most influential parameters are viscosity, angle, and diameter. According to the result of an orthogonal test, a suitable combination of the holes’ parameters was obtained. In the combination, the value of holes number, diameter, distance, and angle is 4, 50 mm, 300 mm, and 120 deg, respectively. This paper provides a theoretical basis for an optimization design of the new method.

References

1.
Shen
,
Z. H.
,
Huang
,
H. C.
, and
Gao
,
D. L.
,
2009
, “
Analysis on New Development and Development Trend of Worldwide Drilling Technology
,”
J. China Univ. Pet.
33
(
4
), pp.
64
70
.
2.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
F.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Nat. Gas Sci. Eng.
39
(
2017
), pp.
44
53
.
3.
Rui
,
Z.
,
Peng
,
F.
,
Ling
,
K.
,
Chang
,
H.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Nat. Gas Sci. Eng.
38
(
2017
), pp.
12
20
.
4.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
166
(
2018
), pp.
900
905
.
5.
Zhou
,
X.
,
Zeng
,
F.
,
Zhang
,
L.
, and
Wang
,
H.
,
2016
, “
Foamy Oil Flow in Heavy Oil–Solvent Systems Tested by Pressure Depletion in a Sandpack
,”
Fuel
,
171
(
2016
), pp.
210
223
.
6.
Bennion
,
D. B.
,
Thomas
,
F. B.
,
Jamaluddin
,
A. M. M.
, and
Ma
,
T.
,
2000
, “
Using Underbalanced Drilling to Reduce Invasive Formation Damage and Improve Well Productivity—An Update
,”
J. Can. Pet. Technol.
,
39
(
7
), pp.
52
60
.
7.
Song
,
X.
,
Lv
,
Z.
,
Li
,
G.
,
Hu
,
X.
, and
Shi
,
Y.
,
2017
, “
Numerical Analysis on the Impact of the Flow Field of Hydrothermal Jet Drilling for Geothermal Wells in a Confined Cooling Environment
,”
Geothermics
,
66
(
2017
), pp.
39
49
.
8.
Cooper
,
S. C.
,
1998
, “
Horizontal, Underbalanced Wells Yield High Rates in Colombia
,”
World Oil
,
219
(
9
), pp.
75
81
.
9.
Wang
,
D.
,
2012
, “
Progress of the High-Efficiency Rock-Breaking Method
,”
China Pet. Mach.
40
(
6
), pp.
1
6
.
10.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Chun
,
J.
,
Li
,
Y.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Comprehensive Investigation on Performance of Oil and Gas Development in Nigeria: Technical and Non-Technical Analyses
,”
Energy
,
158
(
2018
), pp.
666
680
.
11.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
165
(
2018
), pp.
627
639
.
12.
Meng
,
X.
, and
Yang
,
D.
,
2018
, “
Dynamic Dispersion Coefficient of Solutes Flowing in a Circular Tube and a Tube-Bundle Model
,”
ASME J. Energy Res. Technol.
140
(
1
), p.
012903
.
13.
Hustrulid
,
W. A.
, and
Fairhurst
,
C.
,
1971
, “
A Theoretical and Experimental Study of the Percussive Drilling of Rock Part I—Theory of Percussive Drilling
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
8
(
4
), pp.
311
333
.
14.
Li
,
G.
,
Ren
,
W.
,
Meng
,
Y.
,
Wang
,
C.
, and
Wei
,
N.
,
2014
, “
Micro-Flow Kinetics Research on Water Invasion in Tight Sandstone Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
20
(
2
), pp.
184
191
.
15.
Ezeakacha
,
C. P.
,
Salehi
,
S.
, and
Hayatdavoudi
,
A.
,
2017
, “
Experimental Study of Drilling Fluid’s Filtration and Mud Cake Evolution in Sandstone Formations
,”
ASME J. Energy Res. Technol.
139
(
2
), p.
022912
.
16.
Kutlu
,
B.
,
Takach
,
N.
,
Ozbayoglu
,
E. M.
,
Miska
,
S. Z.
,
Yu
,
M.
, and
Mata
,
C.
,
2017
, “
Drilling Fluid Density and Hydraulic Drag Reduction With Glass Bubble Additives
,”
ASME J. Energy Res. Technol.
139
(
4
), p.
042904
.
17.
Perez-Tellez
,
C.
,
Smith
,
J. R.
, and
Edwards
,
J. K.
,
2003
, “
A New Comprehensive, Mechanistic Model for Underbalanced Drilling Improves Wellbore Pressure Predictions
,”
SPE Drill. Completion
,
18
(
18
), pp.
199
208
.
18.
He
,
S.
,
Wang
,
W.
,
Shen
,
H.
,
Tang
,
M.
,
Liang
,
H.
, and
Lu
,
J. A.
,
2015
, “
Factors Influencing Wellbore Stability During Underbalanced Drilling of Horizontal Wells—When Fluid Seepage is Considered
,”
J. Nat. Gas Sci. Eng.
23
(
2015
), pp.
80
89
.
19.
He
,
S.
,
Wang
,
W.
,
Tang
,
M.
,
Hu
,
B.
, and
Xue
,
W.
,
2014
, “
Effects of Fluid Seepage on Wellbore Stability of Horizontal Wells Drilled Underbalanced
,”
J. Nat. Gas Sci. Eng.
,
21
(
21
), pp.
338
347
.
20.
Zhang
,
J.
,
Zou
,
J.
,
Nie
,
K.
,
Shao
,
Y.
,
Zhao
,
Y.
, and
Zhang
,
W.
,
2017
, “
Numerical Simulation of Wellhead Back Pressure in Under-Balanced Drilling ⋆
,”
Energy Procedia
,
107
(
2017
), pp.
150
156
.
21.
Bhandari
,
J.
,
Abbassi
,
R.
,
Garaniya
,
V.
, and
Khan
,
F.
,
2015
, “
Risk Analysis of Deepwater Drilling Operations Using Bayesian Network
,”
J. Loss Prevent. Process Ind.
38
(
2015
), pp.
11
23
.
22.
Nandan
,
A.
, and
Imtiaz
,
S.
,
2017
, “
Nonlinear Model Predictive Control of Managed Pressure Drilling
,”
ISA Trans.
69
(
2017
), pp.
307
314
.
23.
Aarsnes
,
U. J. F.
,
Açıkmeşe
,
B.
,
Ambrus
,
A.
, and
Aamo
,
O. M.
,
2016
, “
Robust Controller Design for Automated Kick Handling in Managed Pressure Drilling
,”
J. Process Control
,
47
(
2016
), pp.
46
57
.
24.
Nascimento
,
A.
,
Elmgerbi
,
A.
,
Roohi
,
A.
,
Prohaska
,
M.
,
Thonhauser
,
G.
,
Gonçalves
,
J. L.
, and
Mathias
,
M. H.
,
2017
, “
Reverse Engineering: A New Well Monitoring and Analysis Methodology Approaching Playing-Back Drill-Rate Tests in Real-Time for Drilling Optimization
,”
ASME J. Energy Res. Technol.
139
(
1
), p.
012902
.
25.
Cao
,
C.
,
Pu
,
X.
,
Zhao
,
Z.
,
Wang
,
G.
, and
Du
,
H.
,
2018
, “
Experimental Investigation on Wellbore Strengthening Based on a Hydraulic Fracturing Apparatus
,”
ASME J. Energy Res. Technol.
140
(
5
), p.
052902
.
26.
Ying
,
Z.
,
Zhanghua
,
L.
,
Abdelal
,
G. F.
, and
Tiejun
,
L.
,
2018
, “
Numerical and Experimental Investigation on Flow Capacity and Erosion Wear of Blooey Line in Gas Drilling
,”
ASME J. Energy Res. Technol.
140
(
5
), pp.
054501
.
27.
Soleymanzadeh
,
A.
,
Gahrooei
,
H. R. E.
, and
Joekar-Niasar
,
V.
,
2018
, “
A New Empirical Model for Bulk Foam Rheology
,”
ASME J. Energy Res. Technol.
140
(
3
), p.
032911
.
28.
Vulovic
,
A.
,
Sustersic
,
T.
,
Cvijic
,
S.
,
Ibric
,
S.
, and
Filipovic
,
N.
,
2017
, “
Coupled in Silico Platform: Computational Fluid Dynamics (CFD) and Physiologically-Based Pharmacokinetic (PBPK) Modelling
,”
Eur. J. Pharm. Sci.
113
(
2018
), pp.
171
184
.
29.
Almukainzi
,
M.
,
Jamali
,
F.
,
Aghazadeh-Habashi
,
A.
, and
Löbenberg
,
R.
,
2016
, “
Disease Specific Modeling: Simulation of the Pharmacokinetics of Meloxicam and Ibuprofen in Disease State vs. Healthy Conditions
,”
Eur. J. Pharm. Biopharm.
100
(
2016
), pp.
77
84
.
30.
Matthew
,
S. C.
,
David
,
F. F.
,
Hak-Kim
,
C.
, and
Judy
,
A. R.
,
2004
, “
Effect of Design on the Performance of a Dry Powder Inhaler Using Computational Fluid Dynamics. Part 1: Grid Structure and Mouthpiece Length
,”
J. Pharm. Sci.
,
93
(
11
), pp.
2863
2876
.
31.
Huang
,
K.
,
Chen
,
S. F.
,
Xia
,
Q. I.
, and
Zhou
,
Z. G.
,
2004
, “
Neural Network Optimal Design Based on Orthogonal Experiment Method
,”
Syst. Eng. Theory Methodol. Appl.
,
13
(
3
), pp.
272
275
.
32.
Pallant
,
J.
, and
Manual
,
S. S.
,
2010
,
A Step by Step Guide to Data Analysis Using SPSS
,
McGraw-Hill Education
,
Berkshire, UK
.
You do not currently have access to this content.