Abstract

In this paper, a new compositional mechanistic wellbore model, including gas lifting parameters, is presented. In the governing equations of this model, new terms for mass transfer between phases and the enthalpy of phase change, which are important in non-isothermal gas lift systems, have been considered. These terms have been ignored in some recent research studies and subsequent results show that by ignoring them, serious errors may arise. In the current research study, using a mechanistic drift-flux approach, the pressure distribution in a wellbore was modeled. To verify the new simulator, the results were compared with those of commercial simulators. They were also verified against the phase behavior analysis of the fluid flowing in the wellbore. In addition, in order to show the novel aspects of the new simulator, the results of the presented simulator were compared with the results of a recently proposed model found in the literature. It was concluded that neglecting phase change effects may cause significant errors in calculating pressure and temperature values along wellbores. This error could be significant, up to 24% depending on conditions when flowing fluid pressure is close to its saturation point or in the case of simulating gas lift operation.

References

1.
Fancher
,
G. H.
Jr.
, and
Brown
,
K. E.
,
1963
, “
Prediction of Pressure Gradients for Multiphase Flow in Tubing
,”
Soc. Pet. Eng. J.
,
3
(
1
), pp.
59
69
.
2.
Duns
,
H.
Jr.
, and
Ros
,
N.
,
1963
, “
Vertical Flow of Gas and Liquid Mixtures in Wells
,”
Proceedings of the 6th World Petroleum Congress
,
Frankfurt
,
June 19–26
, pp.
451
465
.
3.
Hagedorn
,
A. R.
, and
Brown
,
K. E.
,
1965
, “
Experimental Study of Pressure Gradients Occurring During Continuous Two-Phase Flow in Small-Diameter Vertical Conduits
,”
J. Pet. Technol.
,
17
(
4
), pp.
475
484
.
4.
Orkiszewski
,
J.
,
1967
, “
Predicting Two-Phase Pressure Drops in Vertical Pipe
,”
J. Pet. Technol.
,
19
(
6
), pp.
829
838
.
5.
Taitel
,
Y.
, and
Dukler
,
A.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
6.
Taitel
,
Y.
,
Bornea
,
D.
, and
Dukler
,
A.
,
1980
, “
Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
(
3
), pp.
345
354
.
7.
Hasan
,
A. R.
, and
Kabir
,
C. S.
,
1988
, “
Predicting Multiphase Flow Behavior in a Deviated Well
,”
SPE Prod. Eng.
,
3
(
4
), pp.
474
482
.
8.
Ansari
,
A.
,
Sylvester
,
N.
,
Sarica
,
C.
,
Shoham
,
O.
, and
Brill
,
J.
,
1994
, “
A Comprehensive Mechanistic Model for Upward Two-Phase Flow in Wellbores
,”
SPE Prod. Facil.
,
9
(
2
), pp.
143
151
.
9.
Xiao
,
J.
,
Shoham
,
O.
, and
Brill
,
J.
,
1990
, “
A comprehensive mechanistic model for two-phase flow in pipelines
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 23–26
, pp.
167
180
.
10.
Zhang
,
H.-Q.
,
Wang
,
Q.
,
Sarica
,
C.
, and
Brill
,
J. P.
,
2003
, “
A Unified Mechanistic Model for Slug Liquid Holdup and Transition Between Slug and Dispersed Bubble Flows
,”
Int. J. Multiphase Flow
,
29
(
1
), pp.
97
107
.
11.
Shi
,
H.
,
Holmes
,
J. A.
,
Durlofsky
,
L. J.
,
Aziz
,
K.
,
Diaz
,
L.
,
Alkaya
,
B.
, and
Oddie
,
G.
,
2005
, “
Drift-Flux Modeling of Two-Phase Flow in Wellbores
,”
SPE J.
,
10
(
1
), pp.
24
33
.
12.
Shi
,
H.
,
Holmes
,
J.
,
Diaz
,
L.
,
Durlofsky
,
L. J.
, and
Aziz
,
K.
,
2005
, “
Drift-Flux Parameters for Three-Phase Steady-State Flow in Wellbores
,”
SPE J.
,
10
(
2
), pp.
130
137
.
13.
Oddie
,
G.
,
Shi
,
H.
,
Durlofsky
,
L.
,
Aziz
,
K.
,
Pfeffer
,
B.
, and
Holmes
,
J.
,
2003
, “
Experimental Study of Two and Three Phase Flows in Large Diameter Inclined Pipes
,”
Int. J. Multiphase Flow
,
29
(
4
), pp.
527
558
.
14.
Khasanov
,
M. M.
,
Krasnov
,
V.
,
Khabibullin
,
R.
,
Pashali
,
A.
, and
Guk
,
V.
,
2009
, “
A Simple Mechanistic Model for Void-Fraction and Pressure-Gradient Prediction in Vertical and Inclined Gas/Liquid Flow
,”
SPE Prod. Oper.
,
24
(
1
), pp.
165
170
.
15.
Ramey
,
H.
, Jr.
,
1962
, “
Wellbore Heat Transmission
,”
J. Pet. Technol.
,
14
(
4
), pp.
427
435
.
16.
Satter
,
A.
,
1965
,
Heat Losses During Flow of Steam Down a Wellbore
,
American Institute of Mechanical Engineers
,
New York, NY
.
17.
Hasan
,
A.
, and
Kabir
,
C.
,
1994
, “
Aspects of Wellbore Heat Transfer During Two-Phase Flow (Includes Associated Papers 30226 and 30970)
,”
SPE Prod. Facil.
,
9
(
3
), pp.
211
216
.
18.
Pourafshary
,
P.
,
Varavei
,
A.
,
Sepehrnoori
,
K.
, and
Podio
,
A.
,
2009
, “
A Compositional Wellbore/Reservoir Simulator to Model Multiphase Flow and Temperature Distribution
,”
J. Pet. Sci. Eng.
,
69
(
1
), pp.
40
52
.
19.
Livescu
,
S.
,
Aziz
,
K.
, and
Durlofsky
,
L.
, “
Development and Application of a Fully-Coupled Thermal Compositional Wellbore Flow Model
,”
Proceedings at the SPE Western Regional Meeting
,
San Jose, CA
, pp.
24
26
, Paper No. SPE 121306.
20.
Bendiksen
,
K. H.
,
Maines
,
D.
,
Moe
,
R.
, and
Nuland
,
S.
,
1991
, “
The Dynamic Two-Fluid Model OLGA: Theory and Application
,”
SPE Prod. Eng.
,
6
(
2
), pp.
171
180
.
21.
Schlumberger
,
2018
, “
OLGA Dynamic Multiphase Flow Simulator
.”
22.
Livescu
,
S.
,
Durlofsky
,
L. J.
,
Aziz
,
K.
, and
Ginestra
,
J.-C.
,
2008
, “
Application of a New Fully-Coupled Thermal Multiphase Wellbore Flow Model
,”
Proceedings of the SPE Symposium on Improved Oil Recovery
,
Tulsa, OK
,
Apr. 20–23
.
23.
Zhang
,
Z.
,
Xiong
,
Y.
, and
Guo
,
F.
,
2018
, “
Analysis of Wellbore Temperature Distribution and Influencing Factors During Drilling Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092901
.
24.
Chen
,
X.
,
Gao
,
D.
,
Yang
,
J.
,
Luo
,
M.
,
Feng
,
Y.
, and
Li
,
X.
,
2018
, “
A Comprehensive Wellbore Stability Model Considering Poroelastic and Thermal Effects for Inclined Wellbores in Deepwater Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092903
.
25.
Tan
,
Y.
,
Li
,
H.
,
Zhou
,
X.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Horizontal Well Performances in Fractured Gas Reservoirs With Bottom-Water and Different Fracture Intensities
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102905
.
26.
Shi
,
B.
,
Liu
,
Y.
,
Ding
,
L.
,
Lv
,
X.
, and
Gong
,
J.
,
2019
, “
New Simulator for Gas–Hydrate Slurry Stratified Flow Based on the Hydrate Kinetic Growth Model
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012906
.
27.
Tong
,
Z.
,
Zhao
,
G.
, and
Wei
,
S.
,
2018
, “
A Novel Intermittent Gas Lifting and Monitoring System Toward Liquid Unloading for Deviated Wells in Mature Gas Field
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052906
.
28.
Elldakli
,
F.
,
Soliman
,
M. Y.
,
Shahri
,
M.
,
Winkler
,
H.
,
Gamadi
,
T.
,
2018
,
Improved Gas Lift Valve Performance Using a Modified Design for Gas Lift Valve Seat
,
Society of Petroleum Engineers
.
29.
Coutinho
,
R. P.
,
Williams
,
W. C.
,
Waltrich
,
P. J.
,
Mehdizadeh
,
P.
,
Scott
,
S.
,
Xu
,
J.
,
Mabry
,
W.
,
2018
,
The Case for Liquid-Assisted Gas Lift Unloading
,
Society of Petroleum Engineers
, Vol.
33
(
1
), pp.
73
84
.
30.
Zuber
,
N.
, and
Findlay
,
J.
,
1965
, “
Average Volumetric Concentration in Two-Phase Flow Systems
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
453
468
.
31.
Lee
,
B. I.
, and
Kesler
,
M. G. J. A. J.
,
1975
, “
A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States
,”
AIChE J.
,
21
(
3
), pp.
510
527
.
32.
Van Ness
,
H.
,
Smith
,
J. M.
, and
Abbott
,
M. M.
,
2001
,
Introduction to Chemical Engineering Thermodynamics
,
McGraw-Hill
,
New York
.
33.
Peng
,
D.-Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.
34.
Robinson
,
D. B.
, and
Peng
,
D.-Y.
,
1978
,
The Characterization of the Heptanes and Heavier Fractions for the GPA Peng-Robinson Programs
,
Gas Processors Association
.
35.
Riazi
,
M. R.
, and
Daubert
,
T. E.
,
1987
, “
Characterization Parameters for Petroleum Fractions
,”
Ind. Eng. Chem. Res.
,
26
(
4
), pp.
755
759
.
36.
Edmister
,
W. C.
, and
Lee
,
B. I.
,
1984
,
Applied Hydrocarbon Thermodynamics
, 2nd, Vol.
1
,
Gulf Professional Publishing
,
Houston, TX
.
37.
Chueh
,
P.
, and
Prausnitz
,
J.
,
1967
, “
Vapor-Liquid Equilibria at High Pressures Vapor-Phase Fugacity Coefficients in Nonpolar and Quantum-Gas Mixtures
,”
Ind. Eng. Chem. Fundam.
,
6
(
4
), pp.
492
498
.
38.
Lohrenz
,
J.
,
Bray
,
B. G.
, and
Clark
,
C. R.
,
1964
, “
Calculating Viscosities of Reservoir Fluids From Their Compositions
,”
J. Pet. Technol.
,
16
(
10
), p.
1
.
39.
Weinaug
,
C. F.
, and
Katz
,
D. L.
,
1943
, “
Surface Tensions of Methane-Propane Mixtures
,”
Ind. Eng. Chem.
,
35
(
2
), pp.
239
246
.
40.
Danesh
,
A.
,
1998
,
PVT and Phase Behaviour of Petroleum Reservoir Fluids
,
Elsevier
,
New York
.
41.
Livescu
,
S.
,
Durlofsky
,
L.
,
Aziz
,
K.
, and
Ginestra
,
J.
,
2010
, “
A Fully-Coupled Thermal Multiphase Wellbore Flow Model for Use in Reservoir Simulation
,”
J. Pet. Sci. Eng.
,
71
(
3
), pp.
138
146
.
You do not currently have access to this content.