Abstract

The proper thermal diagnostics of pipeline insulation is an important problem. The heat losses from the pipelines depend distinctly on the quality of this insulation. Changes in weather conditions cause transient accumulation of energy in the pipeline insulation and may cause difficulties during evaluation of the quality of the pipeline thermal insulation. Generally, the goal of this investigation was to identify the scale of energy accumulation inside thermal insulation. This is important because during the calculation of heat losses from thermal pipelines on the basis of infrared camera temperature measurement results usually a steady thermal state inside the insulation is assumed. In order to determine the distributions of the temperature inside the insulation, the calculations of the temperature changes inside the pipeline insulation for real changeable meteorological conditions with the use of software ansys-fluent and others have been carried out. Both the heat transfer between the inner pipeline tube and outer pipeline shell and energy accumulation inside the pipeline elements were considered. For the pipeline insulation evaluation purpose, different coefficients for the analysis of energy accumulation scale were defined and used. The measurement results of the temperature of inner pipeline tube and outer pipeline shell gathered during the operation of the special experimental rig were used as input data for the aforementioned numerical simulations. In these calculations, they constituted the first (Dirichlet's) boundary condition. The conclusions resulting from this work are useful for specialists involved in the technical evaluation of the thermal protection features of pipelines.

References

1.
Górzyński
,
J.
,
2000
,
Energy Auditing
,
National Energy Conservation Agency
,
Warszawa, Poland
(in Polish).
2.
Białecki
,
R.
, and
Kruczek
,
T.
,
1996
, “
Frictional, Diathermal Flow of Steam in a Pipeline
,”
Chem. Eng. Sci.
,
51
(
19
), pp.
4369
4378
. 10.1016/0009-2509(96)00296-5
3.
Mitra
,
A. K.
, and
Rouleau
,
W. T.
,
1988
, “
Losses in Very Long Insulated Steam Pipelines
,”
ASME J. Energy Resour. Technol.
,
110
(
1
), pp.
43
47
. 10.1115/1.3231359
4.
Pang
,
Z. X.
,
Wang
,
L.
, and
Lv
,
X. C.
,
2016
, “
A Model to Calculate Heat Loss of Flowing Superheated Steam in Pipe or Wellbore
,”
Comput. Therm. Sci.
,
8
(
3
), pp.
249
263
. 10.1615/ComputThermalScien.2016016880
5.
Kruczek
,
T.
,
2013
, “
Determination of Annual Heat Losses From Heat and Steam Pipeline Networks and Economic Analysis of Their Thermomodernisation
,”
Energy
,
62
, pp.
120
131
. 10.1016/j.energy.2013.08.019
6.
Górzyński
,
J.
,
1996
,
Industrial Thermal Insulations
,
National Energy Conservation Agency
,
Warszawa, Poland
(in Polish).
7.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
2011
,
Thermal Radiation Heat Transfer
, 5th ed.,
CRC Press, Taylor&Francis Group
,
New York
.
8.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Elsevier Academic Press Inc.
,
San Diego
.
9.
Kruczek
,
T.
,
2015
, “
Use of Infrared Camera in Energy Diagnostics of the Objects Placed in Open Air Space in Particular at Non-Isothermal Sky
,”
Energy
,
91
, pp.
35
47
. 10.1016/j.energy.2015.07.132
10.
Nemec
,
P.
,
Čaja
,
A.
, and
Lenhard
,
R.
,
2010
, “
Visualization of Heat Transport in Heat Pipes Using Thermocamera
,”
Arch. Thermodyn.
,
31
(
4
), pp.
125
132
. 10.2478/v10173-010-0033-6
11.
Kruczek
,
T.
,
2015
, “
Conditions for the Use of Infrared Camera Diagnostics in Energy Auditing of the Objects Exposed to Open Air Space at Isothermal Sky
,”
Arch. Thermodyn.
,
36
(
1
), pp.
67
82
. 10.1515/aoter-2015-0005
12.
Kruczek
,
T.
,
2009
, “
Determination of Radiative Ambient Temperature During Measurements in Open Air Space
,”
Meas. Autom. Monit.
,
55
(
11
), pp.
882
885
(in Polish).
13.
Kruczek
,
T.
, et al
,
2006
, “
Analysis of the Thermovision Measurements Results of the Heat-Pipelines With the Application of the CFD Fluent Package
,”
Proceedings of 7th International Conference—Thermography and Thermometry in Infrared
,
B.
Więcek
, ed.,
Ustroń
,
Nov. 4–6
, pp.
125
129
.
14.
Kruczek
,
T.
,
Adamczyk
,
W.
, and
Kruczek
,
G.
,
2016
, “
Use of Matlab Package for External Local Calibration of IR Camera With Microbolometric FPA Detector
,”
Proceedings of 13th InfraRed Thermography Conference QIRT2016
,
X.
Maldague
, et al
, eds.,
Gdańsk, Poland
,
July 4–8
, pp.
450
459
.
15.
Kruczek
,
T.
,
2017
, “Comparison of Internal and External Models Describing Influence of Main Measurements Parameters on Thermovision Measurement Result,”
Contemporary Problems in Thermodynamics
,
T.
Bury
,
A.
Szlęk
, eds.,
Silesian University of Technology
,
Gliwice
, pp.
1231
1242
.
16.
Kruczek
,
T.
, and
Fic
,
A.
,
2010
, “
Calculation and Infrared Measurement Identification of Shell Temperature Distribution on Overhead Heat Pipeline Placed in Open Air Space
,”
Proceedings of International Conference—Quantitative InfraRed Thermography Conference
,
X. P. V.
Maldague
ed.,
Québec, Canada
,
July 27–30
, pp.
645
652
.
17.
Pizzolato
,
A.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2017
, “
Topology Optimization of Robust District Heating Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020905
. 10.1115/1.4038312
18.
Bagavathiappan
,
S.
,
Lahiri
,
B. B.
,
Saravanan
,
T.
,
Philip
,
J.
, and
Jayakumar
,
T.
,
2013
, “
Infrared Thermography for Condition Monitoring—A Review
,”
Infrared Phys. Technol.
,
60
, pp.
35
55
. 10.1016/j.infrared.2013.03.006
19.
Kopeć
,
M.
,
Chatzipanagiotou
,
P.
,
De Mey
,
G.
, and
Więcek
,
B.
,
2017
, “
Detection of Inner Defects in Industrial Pipelines Using Transient IR Thermography
,”
Meas. Autom. Monit.
,
63
(
3
), pp.
115
118
.
20.
Poredoš
,
P.
,
Vidrih
,
B.
,
Kitanovski
,
A.
, and
Poredoš
,
A.
,
2018
, “
A Thermo-Economic and Emissions Analysis of Different Sanitary-Water Heating Units Embedded Within Fourth-Generation District-Heating Systems
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122003
. 10.1115/1.4040102
21.
Ma
,
S. X.
,
Zhou
,
D. J.
,
Zhang
,
H. S.
,
Weng
,
S. L.
, and
Shao
,
T. M.
,
2019
, “
Modeling and Operational Optimization Based on Energy Hubs for Complex Energy Networks With Distributed Energy Resources
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022002
. 10.1115/1.4041287
22.
Orzechowski
,
T.
, and
Orzechowski
,
M.
,
2018
, “
Optimal Thickness of Various Insulation Materials for Different Temperature Conditions and Heat Sources in Terms of Economic Aspect
,”
J. Build. Phys.
,
41
(
4
), pp.
377
393
. 10.1177/1744259117708733
23.
Marty
,
F.
,
Serra
,
S.
,
Sochard
,
S.
, and
Reneaume
,
J. M.
,
2018
, “
Simultaneous Optimization of the District Heating Network Topology and the Organic Rankine Cycle Sizing of a Geothermal Plant
,”
Energy
,
159
, pp.
1060
1074
. 10.1016/j.energy.2018.05.110
24.
Cammarata
,
G.
,
Fichera
,
A.
, and
Marletta
,
L.
,
1998
, “
Using Genetic Algorithms and the Exergonomic Approach to Optimize District Heating Networks
,”
ASME J. Energy Resour. Technol.
,
120
(
3
), pp.
241
246
. 10.1115/1.2795042
25.
Ma
,
W.
,
Fang
,
S.
,
Liu
,
G.
, and
Zhou
,
R.
,
2017
, “
Modeling of District Load Forecasting for Distributed Energy System
,”
Appl. Energy
,
204
, pp.
181
205
. 10.1016/j.apenergy.2017.07.009
26.
Nemec
,
P.
,
Malcho
,
M.
, and
Jandacka
,
J.
,
2013
, “
Experimental Measurement and Mathematical Calculation Evaporator Temperatures of Closed Loop Thermosyphon
,”
Proceedings of AIP Conference—11th International Conference of Numerical Analysis and Applied Mathematics
,
Rhodes, Greece
,
Sept. 21–27
, Vol.
1558
, pp.
2115
2118
.
27.
Tyburczyk
,
A.
,
2016
, “
Passive Heating of the Ground Surface
,”
Proceedings of 10th International Conference on Experimental Fluid Mechanics, EFM15—Experimental Fluid Mechanics, Book Series: EPJ Web of Conferences
, Vol.
114
,
P.
Dancova
,
M.
Vesely
, eds.,
Prague, Czech Republic
,
Nov. 17–20
, pp.
1
5
, Art. Number UNSP 02127.
28.
Operating Instructions v.6
, Data Acquisition System ALMEMO 5690-2M,
2009
,
Holzkirchen, Germany
,
AHLBORN
.
29.
PN-EN-ISO 12241
,
2001
, Thermal Insulation for Building Equipment and Industrial Installations.
International Standard Organization, Warsaw, Publ. House
,
Alfa-Wero
.
30.
Çengel
,
Y. A.
,
2007
,
Heat and Mass Transfer: A Practical Approach
, 3rd ed.,
Tata McGraw-Hill
,
New Delhi
, (Sl Units).
31.
Furmański
,
P.
, and
Wiśniewski
,
T. S.
,
2005
, “
Influence of Radiation Scattering on Heat Transfer and Determination of Properties of Thermal Insulations
,”
Proceedings of 26th International Thermal Conductivity Conference/14th Thermal Expansion Conference, Book Series: Thermal Conductivity
, Vol.
26
,
R. B.
Dinwiddie
,
R.
Mannello
, eds.,
Cambridge
,
Aug. 6–8
, pp.
400
411
.
32.
Guide to the Expression of Uncertainty in Measurement,
International Organization for Standardization
,
1995
,
Geneva, Switzerland
, pp.
13
34
.
33.
User’s Manual, Digital Multimeter DMM 5017,
Prema-Nucletron-Electronic
,
2014
,
Mainz-München, Germany
, pp.
9.1
9.13
.
34.
User’s Manual,
ZUP Programmable DC Power Supplies, NEMIC-LAMBDA
,
2006
,
Karmielindustrialzone, Israel
, pp.
7
10
.
You do not currently have access to this content.