Abstract

It is well proven that hydraulic fracturing may cause a complex fracture network or an asymmetric fracture pattern. This study aims to develop a model to analyze the pressure transient behaviors for asymmetric fracture patterns. Some physical models were built to describe the asymmetric of fracture length and conductivity. In order to solve the model, each fracture was discreted to several segments and each segment was treated as a line source. According to theory of superposition, we coupled the flow rate and pressure in the boundaries and the middle point of segments. After a Laplace transform to the mathematical model, the flow rate of each line source can be calculated. We used Stehfest inversion algorithm to determine the simulation results in a real-time domain. The calculation results show that the asymmetry of fracture patterns or properties can make a significant change in pressure and derivation curves. If only primary fracture is considered, it is difficult to differentiate the flow period. If the fracture patterns contain several secondary fractures, the derivation curve shows an obvious pseudo-radial flow in the early period.

References

1.
Smith
,
M. B.
,
Holman
,
G. B.
,
Fast
,
C. R.
, and
Covlin
,
R. J.
,
1978
, “
The Azimuth of Deep, Penetrating Fractures in the Wattenberg Field
,”
J. Pet. Technol.
,
30
(
2
), pp.
185
193
. 10.2118/6092-PA
2.
Narasimhan
,
T. N.
, and
Palen
,
W. A.
,
1979
, “
A Purely Numerical Approach for Analyzing Fluid Flow to a Well Intercepting a Vertical Fracture
,”
SPE California Regional Meeting
,
Ventura, CA
,
Apr. 18–20
, Society of Petroleum Engineers.
3.
Warpinski
,
N.
,
Mayerhofer
,
M.
,
Davis
,
E.
, and
Holley
,
E.
,
2014
, “
Integrating Fracture Diagnostics for Improved Microseismic Interpretation and Stimulation Modeling
,”
Unconventional Resources Technology Conference
,
Denver, CO
, Aug.
25–27
, pp.
1518
1536
.
4.
Wei
,
N.
,
Li
,
C.
,
Peng
,
X.
,
Zeng
,
F.
, and
Lu
,
X.
,
2019
, “
Conventional Models and Artificial Intelligence-Based Models for Energy Consumption Forecasting: A Review
,”
J. Pet. Sci. Eng.
,
181
. 10.1016/j.petrol.2019.106187
5.
Warpinski
,
N. R.
,
Branagan
,
P. T.
,
Peterson
,
R. E.
,
Wolhart
,
S. L.
, and
Uhl
,
J. E.
,
1998
, “
Mapping Hydraulic Fracture Growth and Geometry Using Microseismic Events Detected by a Wireline Retrievable Accelerometer Array
,”
SPE Gas Technology Symposium
,
Society of Petroleum Engineers
.
6.
Zhang
,
M.
, and
Ayala
,
L. F.
,
2018
, “
A General Boundary Integral Solution for Fluid Flow Analysis in Reservoirs With Complex Fracture Geometries
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052907
. 10.1115/1.4038845
7.
Maxwell
,
S. C.
,
Urbancic
,
T. I.
,
Steinsberger
,
N.
, and
Zinno
,
R.
,
2002
, “
Microseismic Imaging of Hydraulic Fracture Complexity in the Barnett Shale
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sept. 29–Oct. 2
, Society of Petroleum Engineers.
8.
Fisher
,
M. K.
,
Heinze
,
J. R.
,
Harris
,
C. D.
,
Davidson
,
B. M.
,
Wright
,
C. A.
, and
Dunn
,
K. P.
,
2004
, “
Optimizing Horizontal Completion Techniques in the Barnett Shale Using Microseismic Fracture Mapping
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
, Society of Petroleum Engineers.
9.
Mayerhofer
,
M. J.
,
Lolon
,
E. P.
,
Youngblood
,
J. E.
, and
Heinze
,
J. R.
,
2006
, “
Integration of Microseismic-Fracture-Mapping Results With Numerical Fracture Network Production Modeling in the Barnett Shale
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sept. 24–27
, Society of Petroleum Engineers.
10.
Zhang
,
Q.
,
Wang
,
X.
,
Wang
,
D.
,
Zeng
,
J.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2018
, “
Pressure Transient Analysis for Vertical Fractured Wells With Fishbone Fracture Patterns
,”
J. Nat. Gas Sci. Eng.
,
52
, pp.
187
201
. 10.1016/j.jngse.2018.01.032
11.
Chen
,
Z.
,
Liao
,
X.
,
Zhao
,
X.
,
Lyu
,
S.
, and
Zhu
,
L.
,
2017
, “
A Comprehensive Productivity Equation for Multiple Fractured Vertical Wells With Non-Linear Effects Under Steady-State Flow
,”
J. Pet. Sci. Eng.
,
149
, pp.
9
24
. 10.1016/j.petrol.2016.09.050
12.
Wang
,
S.
,
Cheng
,
L.
,
Huang
,
S.
,
Xue
,
Y.
,
Bai
,
M.
,
Wu
,
Y.
,
Jia
,
P.
,
Sun
,
Z.
, and
Wang
,
J.
,
2019
, “
A Semi-Analytical Method for Modeling Two-Phase Flow Behavior in Fractured Carbonate Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072902
. 10.1115/1.4042237
13.
Gringarten
,
A. C.
,
Ramey Jr
,
H. J.
, and
Raghavan
,
R.
,
1974
, “
Unsteady-State Pressure Distributions Created by a Well With a Single Infinite-Conductivity Vertical Fracture
,”
Soc. Pet. Eng. J.
,
14
(
4
), pp.
347
360
. 10.2118/4051-PA
14.
Cinco-Ley
,
H.
, and
Samaniego
,
V.
,
1977
, “
Effect of Wellbore Storage and Damage on the Transient Pressure Behavior of Vertically Fractured Wells
,”
SPE Annual Fall Technical Conference and Exhibition
,
Denver, Colorado
,
Oct. 9–12
, Society of Petroleum Engineers.
15.
Cinco
,
L.
,
Samaniego
,
V.
, and
Dominguez
,
A.
,
1978
, “
Transient Pressure Behavior for a Well With a Finite-Conductivity Vertical Fracture
,”
Soc. Pet. Eng. J.
,
18
(
4
), pp.
253
264
. 10.2118/6014-PA
16.
Bennett
,
C. O.
,
Rosato
,
N. D.
,
Reynolds
,
A. C.
, and
Raghavan
,
R.
,
1983
, “
Influence of Fracture Heterogeneity and Wing Length on the Response of Vertically Fractured Wells
,”
Soc. Pet. Eng. J.
,
23
(
2
), pp.
219
230
. 10.2118/9886-PA
17.
Resurreicao
,
C. E. S.
, and
Fernando
,
R.
,
1991
, “
Transient Rate Behavior of Finite-Conductivity Asymmetrically Fractured Wells Producing at Constant Pressure
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 6–9
, Society of Petroleum Engineers.
18.
Rodriguez
,
F.
,
Cinco-Ley
,
H.
, and
Samaniego-V
,
F.
,
1992
, “
Evaluation of Fracture Asymmetry of Finite-Conductivity Fractured Wells
,”
SPE Prod. Eng.
,
7
(
2
), pp.
233
239
. 10.2118/20583-PA
19.
Berumen
,
S.
,
Tiab
,
D.
, and
Rodriguez
,
F.
,
2000
, “
Constant Rate Solutions for a Fractured Well With an Asymmetric Fracture
,”
J. Pet. Sci. Eng.
,
25
(
1–2
), pp.
49
58
. 10.1016/S0920-4105(99)00053-4
20.
Tiab
,
D.
,
Lu
,
J.
,
Nguyen
,
H.
, and
Owayed
,
J.
,
2010
, “
Evaluation of Fracture Asymmetry of Finite-Conductivity Fractured Wells
,”
ASME J. Energy Resour. Technol.
,
132
(
1
), p.
012901
. 10.1115/1.4000700
21.
Wang
,
L.
,
Wang
,
X.
,
Li
,
J.
, and
Wang
,
J.
,
2013
, “
Simulation of Pressure Transient Behavior for Asymmetrically Finite-Conductivity Fractured Wells in Coal Reservoirs
,”
Transp. Porous Media
,
97
(
3
), pp.
353
372
. 10.1007/s11242-013-0128-z
22.
Wang
,
L.
, and
Wang
,
X.
,
2014
, “
Type Curves Analysis for Asymmetrically Fractured Wells
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
023101
. 10.1115/1.4025712
23.
Luo
,
W.
, and
Tang
,
C.
,
2015
, “
Pressure-Transient Analysis of Multiwing Fractures Connected to a Vertical Wellbore
,”
SPE J.
,
20
(
2
), pp.
360
367
. 10.2118/171556-PA
24.
Chen
,
Z.
,
Yu
,
W.
,
Liao
,
X.
,
Zhao
,
X.
,
Chen
,
Y.
, and
Sepehrnoori
,
K.
,
2017
, “
A Two-Phase Flow Model for Fractured Horizontal Well With Complex Fracture Networks: Transient Analysis in Flowback Period
,”
SPE Liquids-Rich Basins Conference-North America
,
Midland, TX
,
Sept. 13–14
, Society of Petroleum Engineers.
25.
Cinco-Ley
,
H.
, and
Samaniego-V
,
F.
,
1981
, “
Transient Pressure Analysis for Fractured Wells
,”
J. Pet. Technol.
,
33
(
9
), pp.
1
749
. 10.2118/7490-PA
26.
Wong
,
D. W.
,
Harrington
,
A. G.
, and
Cinco-Ley
,
H.
,
1986
, “
Application of the Pressure Derivative Function in the Pressure Transient Testing of Fractured Wells
,”
SPE Form. Eval.
,
1
(
5
), pp.
470
480
. 10.2118/13056-PA
27.
Tiab
,
D.
,
Azzougen
,
A.
,
Escobar
,
F. H.
, and
Bergumen
,
S.
,
1999
, “
Analysis of Pressure Derivative Data of Finite-Conductivity Fractures by the “Direct Synthesis” Technique
,”
SPE Mid-Continent Operations Symposium
,
Oklahoma City, OK
,
Mar. 28–31
, Society of Petroleum Engineers.
28.
Yao
,
S.
,
Zeng
,
F.
,
Liu
,
H.
, and
Zhao
,
G.
,
2013
, “
A Semi-Analytical Model for Multi-Stage Fractured Horizontal Wells
,”
J. Hydrol.
,
507
, pp.
201
212
. 10.1016/j.jhydrol.2013.10.033
29.
Chen
,
Z.
,
Liao
,
X.
,
Yu
,
W.
,
Sepehrnoori
,
K.
,
Zhao
,
X.
,
Li
,
X.
, and
Sun
,
H.
,
2017
, “
A Diagnostic Approach to Identify Complex Fracture Geometries in Unconventional Reservoirs Using a Semi-Analytical Model
,”
Unconventional Resources Technology Conference
,
Austin, TX
,
24–26 July,
pp.
2145
2171
,
Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers
.
30.
Ozkan
,
E.
, and
Raghavan
,
R.
,
1991
, “
New Solutions for Well-Test-Analysis Problems: Part 1-Analytical Considerations (Includes Associated Papers 28666 and 29213)
,”
SPE Form. Eval.
,
6
(
3
), pp.
359
368
. 10.2118/18615-PA
31.
Meng
,
X.
, and
Wang
,
J.
,
2019
, “
Production Performance Evaluation of Multifractured Horizontal Wells in Shale Oil Reservoirs: An Analytical Method
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102907
. 10.1115/1.4043747
32.
Van Kruysdijk
,
C. P. J. W.
,
1988
, “
Semianalytical Modeling of Pressure Transients in Fractured Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 2–5
, Society of Petroleum Engineers.
33.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
H.
,
2018
, “
Pressure-Transient Behavior of Multisegment Horizontal Wells with Nonuniform Production: Theory and Case Study
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
093101
. 10.1115/1.4039875
You do not currently have access to this content.