Abstract

This paper depicts Box-Behnken design (BBD) approach to optimize the performance and emission characteristics of adjustable compression ratio, single- cylinder diesel engine with nanoparticle-blended biofuel. Cerium oxide (CeO2) nanoparticles and diethyl ether (DEE) are mixed with neem methyl ester (NME) in corresponding ratios as per BBD experimental plan. Engine performance characteristics brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), and NOx, CO, HC, and CO2 emissions have been analyzed. To study the influence of input parameters, quadratic models are developed on each output response using analysis of variance (ANOVA). Desirability function approach has been used to optimize the performance of multi-response parameters. The results revealed that nanoparticles mixed blends of NME and DEE enhances the performance characteristics and reduce the harmful emissions.

References

1.
Tan
,
P. Q.
,
Hu
,
Z. Y.
,
Lou
,
D. M.
, and
Li
,
Z. J.
,
2012
, “
Exhaust Emissions From a Light-Duty Diesel Engine With Jatropha Biodiesel Fuel
,”
Energy
,
39
(
1
), pp.
356
362
. 10.1016/j.energy.2012.01.002
2.
Rakopoulos
,
D. C.
,
Rakopoulos
,
C. D.
,
Giakoumis
,
E. G.
, and
Dimaratos
,
A. M.
,
2012
, “
Characteristics of Performance and Emissions in High-Speed Direct Injection Diesel Engine Fueled With Diethyl Ether/Diesel Fuel Blends
,”
Energy
,
43
(
1
), pp.
214
224
. 10.1016/j.energy.2012.04.039
3.
Kumar
,
B. R.
, and
Saravanan
,
S.
,
2016
, “
Use of Higher Alcohol Biofuels in Diesel Engines: A Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
84
115
. 10.1016/j.rser.2016.01.085
4.
Ali
,
M. H.
,
Mashud
,
M.
,
Rubel
,
M. R.
, and
Ahmad
,
R. H.
,
2013
, “
Biodiesel From Neem oil as an Alternative Fuel for Diesel Engine
,”
Proc. Eng.
,
56
, pp.
625
630
. 10.1016/j.proeng.2013.03.169
5.
Venkatesan
,
S. P.
, and
Kadiresh
,
P. N.
,
2019
, “
Combustion Performance Study of Aqueous Aluminum Oxide Nanofluid Blends in Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042203
. 10.1115/1.4042086
6.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2019
, “
Impact of Binary Biofuel Blend on Lubricating Oil Degradation in a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032203
. 10.1115/1.4041411
7.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2020
, “
Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012201
. 10.1115/1.4044058
8.
Gan
,
S.
,
Ng
,
H. K.
, and
Pang
,
K. M.
,
2011
, “
Homogeneous Charge Compression Ignition (HCCI) Combustion: Implementation and Effects on Pollutants in Direct Injection Diesel Engines
,”
Appl. Energy
,
88
(
3
), pp.
559
567
. 10.1016/j.apenergy.2010.09.005
9.
Shaafi
,
T.
, and
Velraj
,
R.
,
2015
, “
Influence of Alumina Nanoparticles, Ethanol and Isopropanol Blend as Additive With Diesel–Soybean Biodiesel Blend Fuel: Combustion, Engine Performance and Emissions
,”
Renewable Energy
,
80
, pp.
655
663
. 10.1016/j.renene.2015.02.042
10.
Jiaqiang
,
E.
,
Pham
,
M.
,
Zhao
,
D.
,
Deng
,
Y.
,
Le
,
D.
,
Zuo
,
W.
,
Zhu
,
H.
,
Liu
,
T.
,
Peng
,
Q.
, and
Zhang
,
Z.
,
2017
, “
Effect of Different Technologies on Combustion and Emissions of the Diesel Engine Fueled With Biodiesel: A Review
,”
Renewable Sustainable Energy Rev.
,
80
, pp.
620
647
. 10.1016/j.rser.2017.05.250
11.
Graham-Rowe
,
D.
,
2011
, “
Beyond Food Versus Fuel
,”
Nature
,
474
(
7352
), p.
S6
S8
. 10.1038/474S06a
12.
Goering
,
C. E.
,
Schwab
,
A. W.
,
Daugherty
,
M. J.
,
Pryde
,
E. H.
, and
Heakin
,
A. J.
,
1982
, “
Fuel Properties of Eleven Vegetable Oils
,”
Trans. ASAE
,
25
(
6
), pp.
1472
1477
. 10.13031/2013.33748
13.
Chokri
,
B.
,
Ridha
,
E.
,
Rachid
,
S.
, and
Jamel
,
B.
,
2012
, “
Experimental Study of a Diesel Engine Performance Running on Waste Vegetable Oil Biodiesel Blend
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032202
. 10.1115/1.4006655
14.
McCarthy
,
P.
,
Rasul
,
M. G.
, and
Moazzem
,
S.
,
2011
, “
Analysis and Comparison of Performance and Emissions of an Internal Combustion Engine Fuelled With Petroleum Diesel and Different Bio-Diesels
,”
Fuel
,
90
(
6
), pp.
2147
2157
. 10.1016/j.fuel.2011.02.010
15.
Seraç
,
M. R.
,
Aydın
,
S.
,
Yılmaz
,
A.
, and
Şevik
,
S.
,
2020
, “
Evaluation of Comparative Combustion, Performance, and Emission of Soybean-Based Alternative Biodiesel Fuel Blends in a CI Engine
,”
Renewable Energy
,
148
, pp.
1065
1073
. 10.1016/j.renene.2019.10.090
16.
Lang
,
X.
,
Dalai
,
A. K.
,
Bakhshi
,
N. N.
,
Reaney
,
M. J.
, and
Hertz
,
P. B.
,
2001
, “
Preparation and Characterization of Bio-Diesels From Various Bio-Oils
,”
Bioresour. Technol.
,
80
(
1
), pp.
53
62
. 10.1016/S0960-8524(01)00051-7
17.
Karmakar
,
A.
,
Karmakar
,
S.
, and
Mukherjee
,
S.
,
2012
, “
Biodiesel Production From Neem Towards Feedstock Diversification: Indian Perspective
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
1050
1060
. 10.1016/j.rser.2011.10.001
18.
Xing-cai
,
L.
,
Jian-Guang
,
Y.
,
Wu-Gao
,
Z.
, and
Zhen
,
H.
,
2004
, “
Effect of Cetane Number Improver on Heat Release Rate and Emissions of High-Speed Diesel Engine Fueled With Ethanol–Diesel Blend Fuel
,”
Fuel
,
83
(
14–15
), pp.
2013
2020
. 10.1016/j.fuel.2004.05.003
19.
Paul
,
A.
,
Bose
,
P. K.
,
Panua
,
R.
, and
Debroy
,
D.
,
2015
, “
Study of Performance and Emission Characteristics of a Single Cylinder CI Engine Using Diethyl Ether and Ethanol Blends
,”
J. Energy Inst.
,
88
(
1
), pp.
1
10
. 10.1016/j.joei.2014.07.001
20.
Ibrahim
,
A.
,
2016
, “
Investigating the Effect of Using Diethyl Ether as a Fuel Additive on Diesel Engine Performance and Combustion
,”
Appl. Therm. Eng.
,
107
, pp.
853
862
. 10.1016/j.applthermaleng.2016.07.061
21.
Saxena
,
V.
,
Kumar
,
N.
, and
Saxena
,
V. K.
,
2017
, “
A Comprehensive Review on Combustion and Stability Aspects of Metal Nanoparticles and Its Additive Effect on Diesel and Biodiesel Fuelled CI Engine
,”
Renewable Sustainable Energy Rev.
,
70
, pp.
563
588
. 10.1016/j.rser.2016.11.067
22.
Singh
,
P.
,
Chauhan
,
S. R.
,
Goel
,
V.
, and
Gupta
,
A. K.
,
2019
, “
Binary Biodiesel Blend Endurance Characteristics in a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032204
. 10.1115/1.4041545
23.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Fuel Injection Strategy for Utilization of Mineral Diesel-Methanol Blend in a Common Rail Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082305
. 10.1115/1.4046225
24.
Silambarasan
,
R.
, and
Senthil
,
R.
,
2016
, “
Effects of Nano Additives on Performance and Emission Characteristics of a Diesel Engine Fueled With Annona Methyl Ester
,”
Biofuels
,
7
(
3
), pp.
271
277
. 10.1080/17597269.2015.1132370
25.
Prabu
,
A.
,
2018
, “
Engine Characteristic Studies by Application of Antioxidants and Nanoparticles as Additives in Biodiesel Diesel Blends
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082203
. 10.1115/1.4039736
26.
Vellaiyan
,
S.
,
2020
, “
Enhancement in Combustion, Performance, and Emission Characteristics of a Biodiesel-Fueled Diesel Engine by Using Water Emulsion and Nanoadditive
,”
Renewable Energy
,
145
, pp.
2108
2120
. 10.1016/j.renene.2019.07.140
27.
Kumar
,
B. R.
,
Saravanan
,
S.
,
Sethuramasamyraja
,
B.
, and
Rana
,
D.
,
2017
, “
Screening Oxygenates for Favorable NOx/Smoke Trade-off in a DI Diesel Engine Using Multi Response Optimization
,”
Fuel
,
199
, pp.
670
683
. 10.1016/j.fuel.2017.03.041
28.
Patel
,
P. D.
,
Lakdawala
,
A.
, and
Patel
,
R. N.
,
2016
, “
Box–Behnken Response Surface Methodology for Optimization of Operational Parameters of Compression Ignition Engine Fuelled With a Blend of Diesel, Biodiesel, and Diethyl Ether
,”
Biofuels
,
7
(
2
), pp.
87
95
. 10.1080/17597269.2015.1118784
29.
Saravanan
,
S.
,
Kumar
,
B. R.
,
Varadharajan
,
A.
,
Rana
,
D.
, and
Sethuramasamyraja
,
B.
,
2017
, “
Optimization of DI Diesel Engine Parameters Fueled With Iso-Butanol/Diesel Blends–Response Surface Methodology Approach
,”
Fuel
,
203
, pp.
658
670
. 10.1016/j.fuel.2017.04.083
30.
Agarwal
,
A. K.
, and
Dhar
,
A.
,
2013
, “
Experimental Investigations of Performance, Emission, and Combustion Characteristics of Karanja Oil Blends Fuelled DICI Engine
,”
Renewable Energy
,
52
, pp.
283
291
. 10.1016/j.renene.2012.10.015
31.
Pandian
,
M.
,
Sivapirakasam
,
S. P.
, and
Udayakumar
,
M.
,
2011
, “
Investigation on the Effect of Injection System Parameters on Performance and Emission Characteristics of a Twin Cylinder Compression Ignition Direct Injection Engine Fuelled With Pongamia Biodiesel–Diesel Blend Using Response Surface Methodology
,”
Appl. Energy
,
88
(
8
), pp.
2663
2676
. 10.1016/j.apenergy.2011.01.069
32.
Liying
,
H. E.
,
Yumin
,
S. U.
,
Lanhong
,
J.
, and
Shikao
,
S. H. I.
,
2015
, “
Recent Advances of Cerium Oxide Nanoparticles in Synthesis, Luminescence, and Biomedical Studies: A Review
,”
J. Rare Earths
,
33
(
8
), pp.
791
799
. 10.1016/S1002-0721(14)60486-5
33.
Jothi
,
N. M.
,
Nagarajan
,
G.
, and
Renganarayanan
,
S.
,
2007
, “
Experimental Studies on Homogeneous Charge CI Engine Fueled With LPG Using DEE as an Ignition Enhancer
,”
Renewable Energy
,
32
(
9
), pp.
1581
1593
. 10.1016/j.renene.2006.08.007
34.
Mohanan
,
P.
,
Kapilan
,
N.
, and
Reddy
,
R. P.
,
2003
, Effect of Diethyl Ether on the Performance and Emission of a 4-S Di Diesel Engine. SAE Technical Paper No. 2003-01-0760.
35.
Das
,
S.
, and
Mishra
,
S.
,
2017
, “
Box-Behnken Statistical Design to Optimize Preparation of Activated Carbon From Limoniaacidissima Shell With Desirability Approach
,”
J. Environ. Chem. Eng.
,
5
(
1
), pp.
588
600
. 10.1016/j.jece.2016.12.034
36.
Das
,
A.
,
Sarkar
,
S.
,
Karanjai
,
M.
, and
Sutradhar
,
G.
,
2018
, “
RSM Based Study on the Influence of Sintering Temperature on MRR for Titanium Powder Metallurgy Products Using Box-Behnken Design
,”
Mater. Today: Proc.
,
5
(
2
), pp.
6509
6517
. 10.1016/j.matpr.2018.01.137
37.
Asadzadeh
,
S.
, and
Khoshbayan
,
S.
,
2018
, “
Multi-objective Optimization of Influential Factors on Production Process of Foamed Concrete Using Box-Behnken Approach
,”
Constr. Build. Mater.
,
170
, pp.
101
110
. 10.1016/j.conbuildmat.2018.02.189
38.
Kumar
,
S.
, and
Singh
,
R. K.
,
2014
, “
Optimization of Process Parameters by Response Surface Methodology (RSM) for Catalytic Pyrolysis of Waste High-Density Polyethylene to Liquid Fuel
,”
J. Environ. Chem. Eng.
,
2
(
1
), pp.
115
122
. 10.1016/j.jece.2013.12.001
39.
Sharma
,
A.
,
Singh
,
A. P.
, and
Harikumar
,
S. L.
,
2020
, “
Development and Optimization of Nano Emulsion Based Gel for Enhanced Transdermal Delivery of Nitrendipine Using Box-Behnken Statistical Design
,”
Drug Dev. Ind. Pharm.
,
46
(
2
), pp.
329
342
. 10.1080/03639045.2020.1721527
40.
Fu
,
G.
,
Jiang
,
J.
, and
Ni
,
L.
,
2020
, “
Scale Three-Phase Jet Foam Generator Design and Foaming Condition Optimization Based on Box–Behnken Design
,”
Process Saf. Environ. Prot.
,
134
, pp.
217
225
. 10.1016/j.psep.2019.12.015
41.
Kasdekar
,
D. K.
, and
Parashar
,
V.
,
2017
, “
Performance of Box-Behnken and Prediction Model Are Compared With Al-Nano MMC to Maximize the MRR
,”
Mater. Today: Proc.
,
4
(
2
), pp.
3173
3181
. 10.1016/j.matpr.2017.02.202
42.
Vatanpour
,
V.
,
Sheydaei
,
M.
, and
Esmaeili
,
M.
,
2017
, “
Box-Behnken Design as a Systematic Approach to Inspect Correlation Between Synthesis Conditions and Desalination Performance of TFC RO Membranes
,”
Desalination
,
420
, pp.
1
11
. 10.1016/j.desal.2017.06.022
43.
Arvanitoyannis
,
I. S.
, and
Tserkezou
,
P.
,
2008
, “Cereal Waste Management: Treatment Methods and Potential Uses of Treated Waste,”
Waste Management for Food Industries
,
Amsterdam, Academic Press
, pp.
629
702
.
44.
Sivaramakrishnan
,
K.
, and
Ravikumar
,
P.
,
2014
, “
Optimization of Operational Parameters on Performance and Emissions of a Diesel Engine Using Biodiesel
,”
Int. J. Environ. Sci. Technol.
,
11
(
4
), pp.
949
958
. 10.1007/s13762-013-0273-5
45.
Savariraj
,
S.
,
Ganapathy
,
T.
, and
Saravanan
,
C. G.
,
2011
, “
Experimental Investigation of Performance and Emission Characteristics of Mahua Biodiesel in Diesel Engine
,”
ISRN Renewable Energy
,
2011
, pp.
1
6
.
46.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons
,
Hoboken, NJ
.
47.
Box
,
G. E. P.
, and
Wilson
,
K. B.
,
1992
, “On the Experimental Attainment of Optimum Conditions,”
Breakthroughs in Statistics
,
S.
Kotz
and
N. L.
Johnson
, eds., Springer Series in Statistics (Perspectives in Statistics),
Springer
,
New York, NY
, pp.
270
310
.
48.
Sharma
,
N.
,
Khanna
,
R.
,
Gupta
,
R. D.
, and
Sharma
,
R.
,
2013
, “
Modeling and Multiresponse Optimization on WEDM for HSLA by RSM
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2269
2281
. 10.1007/s00170-012-4648-4
49.
Del Castillo
,
E.
,
Montgomery
,
D. C.
, and
McCarville
,
D. R.
,
1996
, “
Modified Desirability Functions for Multiple Response Optimizations
,”
J. Qual. Technol.
,
28
(
3
), pp.
337
345
. 10.1080/00224065.1996.11979684
50.
Moradi
,
M.
,
Arabi
,
H.
, and
Shamsborhan
,
M.
,
2020
, “
Multi-objective Optimization of High Power Diode Laser Surface Hardening Process of AISI 410 by Means of RSM and Desirability Approach
,”
Optik
,
202
, p.
163619
. 10.1016/j.ijleo.2019.163619
You do not currently have access to this content.