Abstract

The purpose of this study is to predict the pollutant emissions generated within an aero-engine combustor model using the computational fluid dynamics-chemical reactor network (CFD-CRN) approach by modeling combustion in highly swirled flows. The selected test case is a laboratory double swirled combustor that came with an extensive experimental database from previous works for CH4/air diffusion flames at atmospheric pressure. The CFD-CRN modeling approach is initiated by solving Reynolds-averaged Navier–Stokes (RANS) equations for a 3D computational domain. The numerically achieved time-averaged values of the velocity components are in good agreement with the experimental data for two different thermal power. The CRN is obtained by dividing the flow field into ideal chemical reactors using various filters on the CFD results. The temperature, axial velocity, CH4, and O2 mass fractions distributions are selected as the splitting criteria for constructing the CRN. An uncertainty analysis is carried out to investigate the effects of different splitting approaches for the temperature criteria since it significantly affected the pollutant emissions in the gas turbine combustor. The simulations of the pollutant emissions are performed via the detailed gas-phase chemical kinetic mechanism of GRI-Mech 3.0. The nonlinear distribution of the temperature intervals result in lower uncertainty and provide reliable results even with a small number of ideal reactors. Also, it is observed that the CRN can be used in different operating conditions and provide suitable results if it is constructed with exceptional consideration. Moreover, a parametric study is performed by varying the equivalence ratio and air inlet temperature to investigate the trends of the NO and CO emissions.

References

1.
Correa
,
S.
,
Hu
,
I.
, and
Tolpadi
,
A.
,
1996
, “
Combustion Technology for Low-Emissions Gas-Turbines: Some Recent Modeling Results
,”
ASME J. Energy Resour. Technol.
,
118
(
3
), pp.
201
208
. 10.1115/1.2793863
2.
Correa
,
S.
,
Dean
,
A.
, and
Hu
,
I.
,
1996
, “
Combustion Technology for Low-Emissions Gas-Turbines: Selected Phenomena Beyond NOx
,”
ASME J. Energy Resour. Technol.
,
118
(
3
), pp.
193
200
. 10.1115/1.2793862
3.
Weigand
,
P.
,
Meier
,
W.
,
Duan
,
X. R.
,
Stricker
,
W.
, and
Aigner
,
M.
,
2006
, “
Investigations of Swirl Flames in a Gas Turbine Model Combustor: I. Flow Field, Structures, Temperature, and Species Distributions
,”
Combust. Flame
,
144
(
1–2
), pp.
205
224
. 10.1016/j.combustflame.2005.07.010
4.
Meier
,
W.
,
Duan
,
X. R.
, and
Weigand
,
P.
,
2006
, “
Investigations of Swirl Flames in a Gas Turbine Model Combustor: II. Turbulence–Chemistry Interactions
,”
Combust. Flame
,
144
(
1–2
), pp.
225
236
. 10.1016/j.combustflame.2005.07.009
5.
Wang
,
L.-Y.
,
Bauer
,
C. K.
, and
Gülder
,
ÖL
,
2018
, “
Soot and Flow Field in Turbulent Swirl-Stabilized Spray Flames of Jet A-1 in a Model Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5437
5444
. 10.1016/j.proci.2018.05.093
6.
Fattahi
,
A.
,
Hosseinalipour
,
S. M.
,
Karimi
,
N.
,
Saboohi
,
Z.
, and
Ommi
,
F.
,
2019
, “
On the Response of a Lean-Premixed Hydrogen Combustor to Acoustic and Dissipative-Dispersive Entropy Waves
,”
Energy
,
180
, pp.
272
291
. 10.1016/j.energy.2019.04.202
7.
Widenhorn
,
A.
,
Noll
,
B.
, and
Aigner
,
M.
,
2009
, “
Numerical Characterisation of a Gas Turbine Model Combustor Applying Scale-Adaptive Simulation
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
, pp.
11
23
. 10.1115/GT2009-59038
8.
Wankhede
,
M. J.
,
2012
, “
Multi-fidelity Strategies for Lean Burn Combustor Design
,”
Doctoral
,
Faculty of Engineering and the Environment, University of Southampton
.
9.
Khodayari
,
H.
,
Ommi
,
F.
, and
Saboohi
,
Z.
,
2018
, “
Investigation of the Primary Breakup Length and Instability of Non-Newtonian Viscoelastic Liquid Jets
,”
Int. J. Multiphys.
,
12
(
4
), pp.
327
347
. 10.21152/1750-9548.12.4.327
10.
Emami
,
M. D.
,
Shahbazian
,
H.
, and
Sunden
,
B.
,
2019
, “
Effect of Operational Parameters on Combustion and Emissions in an Industrial Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012202
. 10.1115/1.4040532
11.
Saboohi
,
Z.
,
Ommi
,
F.
, and
Akbari
,
M.
,
2019
, “
Multi-Objective Optimization Approach Toward Conceptual Design of Gas Turbine Combustor
,”
Appl. Therm. Eng.
,
148
, pp.
1210
1223
. 10.1016/j.applthermaleng.2018.11.082
12.
Poinsot
,
T. J.
, and
Lelef
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
. 10.1016/0021-9991(92)90046-2
13.
Deng
,
X.
,
Xiong
,
Y.
,
Yin
,
H.
, and
Gao
,
Q.
,
2016
, “
Numerical Study of the Effect of Nozzle Configurations on Characteristics of MILD Combustion for Gas Turbine Application
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042212
. 10.1115/1.4033141
14.
Said
,
A. O.
, and
Gupta
,
A. K.
,
2015
, “
Oxygen Enriched Air Effects on Combustion, Emission, and Distributed Reaction
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042203
. 10.1115/1.4030400
15.
Yılmaz
,
I.
,
2013
, “
Effect of Swirl Number on Combustion Characteristics in a Natural Gas Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042204
. 10.1115/1.4024222
16.
Bragg
,
S. L.
,
1953
,
Application of Reaction Rate Theory to Combustion Chamber Analysis
,
Aeronautical Research Council
,
London
.
17.
Swithenbank
,
J.
,
Poll
,
I.
,
Vincent
,
M.
, and
Wright
,
D.
,
1973
, “
Combustion Design Fundamentals
,”
Symposium (International) on Combustion, The Combustion Institute, Pittsburgh
,
Vol. 14
, pp.
627
638
.
18.
Niksa
,
S.
, and
Liu
,
G.-S.
,
2002
, “
Incorporating Detailed Reaction Mechanisms Into Simulations of Coal-Nitrogen Conversion in PF Flames
,”
Fuel
,
81
(
18
), pp.
2371
2385
. 10.1016/S0016-2361(02)00172-2
19.
Niksa
,
S.
,
Liu
,
G.-S.
, and
Hurt
,
R. H.
,
2003
, “
Coal Conversion Submodels for Design Applications at Elevated Pressures. Part I. Devolatilization and Char Oxidation
,”
Prog. Energy Combust. Sci.
,
29
(
5
), pp.
425
477
. 10.1016/S0360-1285(03)00033-9
20.
Falcitelli
,
M.
,
Tognotti
,
L.
, and
Pasini
,
S.
,
2002
, “
An Algorithm for Extracting Chemical Reactor Network Models From CFD Simulation of Industrial Combustion Systems
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
27
42
. 10.1080/713712951
21.
Faravelli
,
T.
,
Frassoldati
,
A.
, and
Ranzi
,
E.
,
2003
, “
Kinetic Modeling of the Interactions Between NO and Hydrocarbons in the Oxidation of Hydrocarbons at Low Temperatures
,”
Combust. Flame
,
132
(
1
), pp.
188
207
. 10.1016/S0010-2180(02)00437-6
22.
Benedetto
,
D.
,
Pasini
,
S.
,
Falcitelli
,
M.
,
La Marca
,
C.
, and
Tognotti
,
L.
,
2000
, “
NOX Emission Prediction From 3-D Complete Modelling to Reactor Network Analysis
,”
Combust. Sci. Technol.
,
153
(
1
), pp.
279
294
. 10.1080/00102200008947265
23.
Rubin
,
P.
, and
Pratt
,
D.
,
1991
, “
Zone Combustion Model Development and use: Application to Emissions Control
,”
Am. Soc. Mech. Eng.
,
91
, pp.
1
41
.
24.
Novosselov
,
I.
,
Malte
,
P.
,
Yuan
,
S.
,
Srinivasan
,
R.
, and
Lee
,
J. C. Y.
,
2006
, “
Chemical Reactor Network Application to Emissions Prediction for Industrial DLE Gas Turbine
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain
, pp.
221
235
.
25.
Fichet
,
V.
,
Kanniche
,
M.
,
Plion
,
P.
, and
Gicquel
,
O.
,
2010
, “
A Reactor Network Model for Predicting NOx Emissions in Gas Turbines
,”
Fuel
,
89
(
9
), pp.
2202
2210
. 10.1016/j.fuel.2010.02.010
26.
Falcitelli
,
M.
,
Pasini
,
S.
,
Rossi
,
N.
, and
Tognotti
,
L.
,
2002
, “
CFD +Reactor Network Analysis: An Integrated Methodology for the Modeling and Optimisation of Industrial Systems for Energy Saving and Pollution Reduction
,”
Appl. Therm. Eng.
,
22
(
8
), pp.
971
979
. 10.1016/S1359-4311(02)00014-5
27.
Saboohi
,
Z.
, and
Ommi
,
F.
,
2017
, “
Emission Prediction in Conceptual Design of the Aircraft Engines Using Augmented CRN
,”
Aeronaut. J.
,
121
(
1241
), pp.
1005
1028
. 10.1017/aer.2017.40
28.
Rezvani
,
R.
,
Denny
,
R. K.
, and
Mavris
,
D. N.
,
2009
, “
A Design-Oriented Semi-Analytical Emissions Prediction Method for Gas Turbine Combustors
,”
47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, FL
, p.
704
.
29.
Rizk
,
N. K.
,
Chin
,
J. S.
,
Marshall
,
A. W.
, and
Razdan
,
M. K.
,
1999
, “
Predictions of NOx Formation Under Combined Droplet and Partially Premixed Reaction of Diffusion Flame Combustors
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
31
38
. 10.1115/1.1391280
30.
Andreini
,
A.
, and
Facchini
,
B.
,
2004
, “
Gas Turbines Design and Off-Design Performance Analysis With Emissions Evaluation
,”
ASME J. Eng. Gas Turbines Power
,
126
(
1
), pp.
83
91
. 10.1115/1.1619427
31.
Charest
,
M.
,
Gauthier
,
J.
, and
Huang
,
X.
,
2006
, “
Design of a Lean Premixed Prevaporized Can Combustor
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain
, pp.
781
791
.
32.
Mavris
,
D.
,
2010
,
Enhanced Emission Prediction Modeling and Analysis for Conceptual Design
,
Final Report for NASA Grant NNX07AO08A 17
.
33.
Monaghan
,
R. F.
,
Tahir
,
R. B.
,
Bourque
,
G.
,
Gordon
,
R. L.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Frassoldati
,
A.
, and
Curran
,
H. J.
,
2014
, “
Detailed Emissions Prediction for a Turbulent Swirling Nonpremixed Flame
,”
Energy Fuels
,
28
(
2
), pp.
1470
1488
. 10.1021/ef402057w
34.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Ferraris
,
G. B.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2007
, “
The Ignition, Combustion and Flame Structure of Carbon Monoxide/Hydrogen Mixtures. Note 2: Fluid Dynamics and Kinetic Aspects of Syngas Combustion
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3486
3500
. 10.1016/j.ijhydene.2007.02.026
35.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2009
, “
Formation of Soot and Nitrogen Oxides in Unsteady Counterflow Diffusion Flames
,”
Combust. Flame
,
156
(
10
), pp.
2010
2022
. 10.1016/j.combustflame.2009.06.023
36.
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Ranzi
,
E.
,
Colantuoni
,
S.
,
Martino
,
P. D.
, and
Cinque
,
G.
,
2009
, “
Experimental and Modeling Study of a Low NOx Combustor for Aero-Engine Turbofan
,”
Combust. Sci. Technol.
,
181
(
3
), pp.
483
495
. 10.1080/00102200802639891
37.
Novosselov
,
I. V.
, and
Malte
,
P. C.
,
2008
, “
Development and Application of an Eight-Step Global Mechanism for CFD and CRN Simulations of Lean-Premixed Combustors
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021502
. 10.1115/1.2795787
38.
Van Der Lans
,
R. P.
,
Glarborg
,
P.
,
Dam-Johansen
,
K.
, and
Larsen
,
P. S.
,
1997
, “
Residence Time Distributions in a Cold, Confined Swirl Flow: Implications for Chemical Engineering Combustion Modelling
,”
Chem. Eng. Sci.
,
52
(
16
), pp.
2743
2756
. 10.1016/S0009-2509(97)00086-9
39.
Drennan
,
S. A.
,
Chou
,
C.-P.
,
Shelburn
,
A. F.
,
Hodgson
,
D. W.
,
Wang
,
C.
,
Naik
,
C. V.
,
Meeks
,
E.
, and
Karim
,
H.
,
2009
, “
Flow Field Derived Equivalent Reactor Networks for Accurate Chemistry Simulation in Gas Turbine Combustors
,”
Turbo Expo: Power for Land, Sea and Air
, Orlando, FL, vol. 48838, pp.
647
656
.
40.
Sturgess
,
G.
, and
Shouse
,
D.
,
1996
, “
A Hybrid Model for Calculating Lean Blowouts in Practical Combustors
,”
32nd Joint Propulsion Conference and Exhibit
, Reston, VA, p.
3125
.
41.
Novosselov
,
I.
,
2018
, “
Eight-Step Global Kinetic Mechanism on Methane Oxidation With Nitric Oxide Formation for Lean Premixed Combustion Turbines
,”
Doctoral dissertation
,
University of Washington
.
42.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, Kent, England
,
488
.
43.
Syred
,
N.
,
Chigier
,
N.
, and
Beer
,
J.
,
1971
, “
Flame Stabilization in Recirculation Zones of Jets With Swirl
,”
Symposium (International) on Combustion
, UT,
vol. 13
, pp.
617
624
. 10.1016/S0082-0784(71)80063-2
44.
Syred
,
N.
, and
Beer
,
J.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
. 10.1016/0010-2180(74)90057-1
45.
Weber
,
R.
, and
Dugué
,
J.
,
1992
, “
Combustion Accelerated Swirling Flows in High Confinements
,”
Progress Energy Combust. Sci. Technol.
,
18
(
4
), pp.
349
367
. 10.1016/0360-1285(92)90005-L
46.
See
,
Y. C.
, and
Ihme
,
M.
,
2015
, “
Large Eddy Simulation of a Partially-Premixed Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1225
1234
. 10.1016/j.proci.2014.08.006
47.
Meier
,
W.
,
Keck
,
O.
,
Noll
,
B.
,
Kunz
,
O.
, and
Stricker
,
W.
,
2000
, “
Investigations in the TECFLAM Swirling Diffusion Flame: Laser Raman Measurements and CFD Calculations
,”
Appl. Phys. B: Lasers Opt.
,
71
(
5
), pp.
725
731
. 10.1007/s003400000436
48.
Pedersen
,
L. S.
,
Breithauptb
,
P.
,
Johansen
,
K. D. A. M.
, and
Weber
,
R.
,
1997
, “
Residence Time Distributions in Confined Swirling Flames
,”
Combust. Sci. Technol.
,
127
(
1–6
), pp.
251
273
. 10.1080/00102209708935696
49.
Imteyaz
,
B.
, and
Habib
,
M. A.
,
2015
, “
Study of Combustion Characteristics of Ethanol at Different Dilution With the Carrier Gas
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032205
. 10.1115/1.4028866
50.
Lokini
,
P.
,
Roshan
,
D. K.
, and
Kushari
,
A.
,
2019
, “
Influence of Swirl and Primary Zone Airflow Rate on the Emissions and Performance of a Liquid-Fueled Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062009
. 10.1115/1.4042410
51.
Neumayer
,
M.
, and
Hirsch
,
C.
,
2013
, “
RANS Simulation of Methane Combustion in a Low Swirl Burner
,”
Doctoral dissertation, M. Sc. thesis
,
Technische Universität München
,
Munich-Germany
.
52.
Biagioli
,
F.
,
2006
, “
Stabilization Mechanism of Turbulent Premixed Flames in Strongly Swirled Flows
,”
Combust. Theory Modell.
,
10
(
3
), pp.
389
412
. 10.1080/13647830500448347
53.
Colorado
,
A.
, and
McDonell
,
V.
,
2018
, “
Emissions and Stability Performance of a Low-Swirl Burner Operated on Simulated Biogas Fuels in a Boiler Environment
,”
Appl. Therm. Eng.
,
130
, pp.
1507
1519
. 10.1016/j.applthermaleng.2017.11.047
54.
Falcitelli
,
M.
,
Pasini
,
S.
, and
Tognotti
,
L.
,
2002
, “
Modelling Practical Combustion Systems and Predicting NOx Emissions With an Integrated CFD Based Approach
,”
Comput. Chem. Eng.
,
26
(
9
), pp.
1171
1183
. 10.1016/S0098-1354(01)00771-2
55.
Mancini
,
M.
,
Schwöppe
,
P.
,
Weber
,
R.
, and
Orsino
,
S.
,
2007
, “
On Mathematical Modelling of Flameless Combustion
,”
Combust. Flame
,
150
(
1–2
), pp.
54
59
. 10.1016/j.combustflame.2007.03.007
56.
Peters
,
A.
, and
Weber
,
R. J. C. S.
,
1995
, “
Mathematical Modeling of a 2.25 MWt Swirling Natural Gas Flame. Part 1: Eddy Break-Up Concept for Turbulent Combustion; Probability Density Function Approach for Nitric Oxide Formation
,”
Combust. Sci. Technol.
,
110
(
1
), pp.
67
101
. 10.1080/00102209508951917
57.
Lebedev
,
A.
,
Secundov
,
A.
,
Starik
,
A.
,
Titova
,
N.
, and
Schepin
,
A.
,
2009
, “
Modeling Study of Gas-Turbine Combustor Emission
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2941
2947
. 10.1016/j.proci.2008.05.015
58.
Wang
,
H.
,
Lei
,
F.
,
Shao
,
W.
,
Zhang
,
Z.
,
Liu
,
Y.
, and
Xiao
,
Y.
,
2016
, “
Experimental and Numerical Studies of Pressure Effects on Syngas Combustor Emissions
,”
Appl. Therm. Eng.
,
102
, pp.
318
328
. 10.1016/j.applthermaleng.2016.03.026
59.
Magnussen
,
B.
,
1981
, “
On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow
,”
19th Aerospace Sciences Meeting, St. Louis, MO
, p.
42
.
60.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symposium (International) on Combustion
, The Combustion Institute, Pittsburgh, Vol. 16, pp.
719
729
. 10.1016/S0082-0784(77)80366-4
61.
Perpignan
,
A. A.
,
Talboom
,
M. G.
,
Levy
,
Y.
, and
Rao
,
A. G.
,
2018
, “
Emission Modeling of an Interturbine Burner Based on Flameless Combustion
,”
Energy Fuels
,
32
(
1
), pp.
822
838
. 10.1021/acs.energyfuels.7b02473
62.
Van Oijen
,
J. A.
,
Lammers
,
F. A.
, and
De Goey
,
L. P. H.
,
2001
, “
Modeling of Complex Premixed Burner Systems by Using Flamelet-Generated Manifolds
,”
Combust. Flame
,
127
(
3
), pp.
2124
2134
. 10.1016/S0010-2180(01)00316-9
63.
Xiao
,
Y.
,
Lai
,
Z.
,
Wang
,
Z.
, and
Chen
,
K.
,
2019
, “
Predicting Lean Blowout and Emissions of Aircraft Engine Combustion Chamber Based on CRN
,”
Int. J. Turbo Jet-Engines
,
36
(
2
), pp.
147
156
. 10.1515/tjj-2017-0063
64.
Peters
,
N.
,
2000
,
Turbulent Combustion, Cambridge Monographs on Mechanics
,
Cambridge University Press
,
Cambridge
.
65.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
RT Edwards, Inc., Philadelphia, PA
.
66.
Russo
,
C.
,
Mori
,
G.
,
Anisimov
,
V. V.
, and
Parente
,
J.
,
2007
, “
Micro Gas Turbine Combustor Emissions Evaluation Using the Chemical Reactor Modelling Approach
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
, Montreal, Canada, pp.
531
542
. 10.1115/GT2007-27687
67.
Frassoldati
,
A.
,
Frigerio
,
S.
,
Colombo
,
E.
,
Inzoli
,
F.
, and
Faravelli
,
T.
,
2005
, “
Determination of NOx Emissions From Strong Swirling Confined Flames With an Integrated CFD-Based Procedure
,”
Chem. Eng. Sci.
,
60
(
11
), pp.
2851
2869
. 10.1016/j.ces.2004.12.038
68.
Monaghan
,
R. F.
,
Tahir
,
R. B.
,
Cuoci
,
A.
,
Bourque
,
G.
,
FüRi
,
M.
,
Gordon
,
R. L.
,
Faravelli
,
T.
,
Frassoldati
,
A.
, and
Curran
,
H. J.
,
2012
, “
Detailed Multi-Dimensional Study of Pollutant Formation in a Methane Diffusion Flame
,”
Energy Fuels
,
26
(
3
), pp.
1598
1611
. 10.1021/ef201853k
69.
Skjøth-Rasmussen
,
M. S.
,
Holm-Christensen
,
O.
,
Østberg
,
M.
,
Christensen
,
T. S.
,
Johannessen
,
T.
,
Jensen
,
A.
,
Glarborg
,
P.
, and
Livbjerg
,
H.
,
2004
, “
Post-processing of Detailed Chemical Kinetic Mechanisms Onto CFD Simulations
,”
Comput. Chem. Eng.
,
28
(
11
), pp.
2351
2361
. 10.1016/j.compchemeng.2004.05.001
70.
Innocenti
,
A.
,
Andreini
,
A.
,
Bertini
,
D.
,
Facchini
,
B.
, and
Motta
,
M.
,
2018
, “
Turbulent Flow-Field Effects in a Hybrid CFD-CRN Model for the Prediction of NOx and CO Emissions in Aero-Engine Combustors
,”
Fuel
,
215
, pp.
853
864
. 10.1016/j.fuel.2017.11.097
71.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Faravelli
,
T.
,
Ranzi
,
E.
, and
Buzzi-Ferraris
,
G.
,
2013
, “
Numerical Modeling of NOx Formation in Turbulent Flames Using a Kinetic Post-Processing Technique
,”
Energy Fuels
,
27
(
2
), pp.
1104
1122
. 10.1021/ef3016987
72.
Fluent
,
A. N. S. Y. S.
,
2011
,
ANSYS Fluent Theory Guide
,
ANSYS Inc., USA.
.
73.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
. 10.1016/0045-7930(94)00032-T
74.
Yılmaz
,
İ
,
Taştan
,
M.
,
İlbaş
,
M.
, and
Tarhan
,
C.
,
2013
, “
Effect of Turbulence and Radiation Models on Combustion Characteristics in Propane–Hydrogen Diffusion Flames
,”
Energy Convers. Manag.
,
72
, pp.
179
186
. 10.1016/j.enconman.2012.07.031
75.
Tsioumanis
,
N.
,
Brammer
,
J. G.
, and
Hubert
,
J.
,
2011
, “
Flow Processes in a Radiant Tube Burner: Combusting Flow
,”
Energy Convers. Manag.
,
52
(
7
), pp.
2667
2675
. 10.1016/j.enconman.2011.02.008
76.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
(
1–2
), pp.
31
43
. 10.1080/00102208108946970
77.
Turns
,
S. R.
,
1996
,
An Introduction to Combustion
, Vol.
499
,
McGraw-Hill
,
New York
.
78.
CHEMKIN-PRO 15092
,
2009
, Reaction Design, San Diego, CA.
79.
Lyra
,
S.
, and
Cant
,
R. S.
,
2013
, “
Analysis of High Pressure Premixed Flames Using Equivalent Reactor Networks for Predicting NOx Emissions
,”
Fuel
,
107
, pp.
261
268
. 10.1016/j.fuel.2012.12.066
80.
ENERGICO 30131
,
2013
, Reaction Design, San Diego, CA.
81.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
. 10.1080/00401706.1979.10489755
You do not currently have access to this content.