Abstract

A detailed numerical study of laminar burning speed for fuel–air mixture is conducted using laminarReactingLMFoam solver which is a modified version of reactingFoam solver based on openfoam code. It accounts for detailed mixture-averaged transport property calculation for reacting flow using low-Mach number governing equations. The effect of various equivalence ratio gradients is studied on stratified hydrogen–air and methane–air mixture with mixture-averaged transport model and unity Lewis number for all species, and corresponding laminar burning speed is compared with homogeneous mixture. For both the fuel–air mixture, rich to lean stratified mixture resulted in a higher laminar burning speed and no significant difference was noticed for lean to rich stratified mixture when compared with homogeneous mixture at same local equivalence ratio. Increased burning speed is explained based on higher burnt gas temperature and molecular diffusion of lighter species from burnt gas referred to “Chemical Effect” in this study. The effect of thermal and molecular diffusion from the burnt gas on laminar burning speed is studied for stratified and homogeneous mixture using mixture-averaged transport model and unity Lewis number for all species. It is shown that the molecular diffusion effect from burnt gas (“Chemical Effect”) is more prominent as compared with the thermal diffusion effect. Extension in lean flammability limit for stratified mixture of both the fuel is shown based on higher heat release rate as compared with homogeneous mixture and extension in flammability limit for stratified mixture is explained based on higher Chemical Effect from burnt gas.

References

1.
Sjöberg
,
M.
, and
Dec
,
J.
,
2006
, “
Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification With Two-Stage Ignition Fuels
,” SAE Technical Paper 2006-01-0629, 10.4271/20 06- 01- 0629
2.
Iwamoto
,
Y.
,
Noma
,
K.
,
Nakayama
,
O.
,
Yamauchi
,
T.
, and
Ando
,
H.
,
1997
, “
Development of Gasoline Direct Injection Engine
,” SAE Technical Paper 970541.
3.
Harada
,
J.
,
Tomita
,
T.
,
Mizuno
,
H.
,
Mashiki
,
Z.
, and
Ito
,
Y.
,
1997
, “
Development of Direct Injection Gasoline Engine
,” SAE Technical Paper 970540.
4.
Spicher
,
U.
,
Reissing
,
J.
,
Kech
,
J.
, and
Gindele
,
J.
,
1999
, “
Gasoline Direct Injection (GDI) Engines—Development Potentialities
,” SAE Technical Paper 1999-01-2938.
5.
Reitz
,
R. D.
,
2013
, “
Directions in Internal Combustion Engine Research
,”
Combust. Flame
,
160
(
1
), pp.
1
8
. 10.1016/j.combustflame.2012.11.002
6.
Kumar Maurya
,
R.
, and
Kumar Agarwal
,
A.
,
2015
, “
Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011101
. 10.1115/1.4027898
7.
Chen
,
Y.
,
2015
, “
Effect of Hydrogen Supplementation on Performance, Knock Behavior, and Emissions of an SI Engine Operating at Lean Air-Fuel Ratios
,”
Ph.D. thesis
,
The University of Auckland
.
8.
Hou
,
J.
,
Liu
,
J.
,
Wei
,
Y.
, and
Jiang
,
Z.
,
2016
, “
Experimental Study on In-Cylinder Pressure Oscillations of Homogenous Charge Compression Ignition–Direct Injection Combustion Engine Fueled With Dimethyl Ether
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052211
. 10.1115/1.4033588
9.
Zhou
,
L.
,
Hua
,
J.
,
Wei
,
H.
, and
Han
,
Y.
,
2019
, “
An Experimental Investigation on Low Load Combustion Stability and Cold-Firing Capacity of a Gasoline Compression Ignition Engine
,”
Engineering
,
5
(
3
), pp.
558
567
. 10.1016/j.eng.2018.12.010
10.
Wang
,
Z.
,
Liu
,
H.
, and
Reitz
,
R. D.
,
2017
, “
Knocking Combustion in Spark-Ignition Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
78
112
. 10.1016/j.pecs.2017.03.004
11.
Alkidas
,
A.
, and
El Tahry
,
S.
,
2003
, “
Contributors to the Fuel Economy Advantage of DISI Engines Over PFI Engines
,” SAE Technical Paper 2003-01-3101.
12.
Alkidas
,
A. C.
,
2007
, “
Combustion Advancements in Gasoline Engines
,”
Energy Convers. Manage.
,
48
(
11
), pp.
2751
2761
. 10.1016/j.enconman.2007.07.027
13.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Split Injection Strategies for Biodiesel-Fueled Premixed Charge Compression Ignition Combustion Engine—Part I: Combustion, Performance, and Emission Studies
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122303
. 10.1115/1.4047315
14.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Split Injection Strategies for Biodiesel-Fueled Premixed Charge Compression Ignition Combustion Engine—Part II: Particulate Studies
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122304
. 10.1115/1.4047316
15.
Lyle
,
K. H.
,
Tseng
,
L. K.
,
Gore
,
J. P.
, and
Laurendeau
,
N. M.
,
1999
, “
A Study of Pollutant Emission Characteristics of Partially Premixed Turbulent Jet Flames
,”
Combust. Flame
,
116
(
4
), pp.
627
639
. 10.1016/S0010-2180(98)00068-6
16.
Whitehouse
,
D. R.
,
Greig
,
D. R.
, and
Koroll
,
G. W.
,
1996
, “
Combustion of Stratified Hydrogen-Air Mixtures in the 10.7 m3 Combustion Test Facility Cylinder
,”
Nucl. Eng. Des.
,
166
(
3
), pp.
453
462
. 10.1016/S0029-5493(96)01261-7
17.
Badr
,
O.
, and
Karim
,
G. A.
,
1984
, “
Flame Propagation in Stratified Methane-Air Mixtures
,”
J. Fire Sci.
,
2
(
6
), pp.
415
426
. 10.1177/073490418400200602
18.
Karim
,
G. A.
, and
Lam
,
H. T.
,
1988
, “
Ignition and Flame Propagation Within Stratified Methane Air Mixtures Formed by Convective Diffusion
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1909
1915
.
19.
Kang
,
T.
, and
Kyritsis
,
D. C.
,
2005
, “
Methane Flame Propagation in Compositionally Stratified Gases
,”
Combust. Sci. Technol.
,
177
(
11
), pp.
2191
2210
. 10.1080/00102200500240836
20.
Kang
,
T.
, and
Kyritsis
,
D. C.
,
2007
, “
Departure From Quasi-Homogeneity During Laminar Flame Propagation in Lean, Compositionally Stratified Methane-Air Mixtures
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1075
1083
. 10.1016/j.proci.2006.07.051
21.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2013
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
. 10.1115/1.4007911
22.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
. 10.1115/1.4026204
23.
Pires Da Cruz
,
A.
,
Dean
,
A. M.
, and
Grenda
,
J. M.
,
2000
, “
A Numerical Study of the Laminar Flame Speed of Stratified Methane/Air Flames
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1925
1932
. 10.1016/S0082-0784(00)80597-4
24.
Shi
,
X.
, and
Chen
,
J.-Y.
,
2017
, “
Numerical Analysis and Model Development for Laminar Flame Speed of Stratified Methane/Air Mixtures
,”
Combust. Flame
,
184
, pp.
233
245
. 10.1016/j.combustflame.2017.06.010
25.
Shi
,
X.
,
Chen
,
J.-Y.
, and
Chen
,
Z.
,
2016
, “
Numerical Study of Laminar Flame Speed of Fuel-Stratified Hydrogen/Air Flames
,”
Combust. Flame
,
163
, pp.
394
405
. 10.1016/j.combustflame.2015.10.014
26.
Zhou
,
R.
, and
Hochgreb
,
S.
,
2013
, “
The Behavior of Laminar Stratified Methane/Air Flames in Counterflow
,”
Combust. Flame
,
160
(
6
), pp.
1070
1082
. 10.1016/j.combustflame.2013.01.023
27.
Dasgupta
,
A.
,
Gonzalez-Juez
,
E.
, and
Haworth
,
D. C.
,
2019
, “
Flame Simulations With an Open-Source Code
,”
Comput. Phys. Commun.
,
237
, pp.
219
229
. 10.1016/j.cpc.2018.11.011
28.
James
,
S.
,
Anand
,
M. S.
,
Razdan
,
M. K.
, and
Pope
,
S. B.
,
2001
, “
In Situ Detailed Chemistry Calculations in Combustor Flow Analyses
,”
ASME J. Eng. Gas Turbines Power
,
123
(4), pp.
747
756
. 10.1115/1.1384878
29.
Gardiner
,
B.
,
Yang
,
H.
,
Qin
,
Z.
,
Smith
,
G.
,
Crosley
,
D.
,
Golden
,
M.
,
Bowman
,
C.
,
Hanson
,
R.
,
Davidson
,
D.
,
Frenklach
,
M.
,
Moriarty
,
N.
, and
Eiteener
,
B.
GRI 3.0. https://me.berkeley.edu/grimech
30.
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Laminar Burning Velocity of Methane–Air–Diluent Mixtures
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
190
196
. 10.1115/1.1339984
31.
Zhang
,
J.
, and
Abraham
,
J.
,
2016
, “
A Numerical Study of Laminar Flames Propagating in Stratified Mixtures
,”
Combust. Flame
,
163
, pp.
461
471
. 10.1016/j.combustflame.2015.10.020
32.
Altantizis
,
C.
,
Frouzakis
,
C.
,
Tomboulides
,
A.
, and
Boulouchos
,
K.
,
2015
, “
Direct Numerical Simulation of Circular Expanding Premixed Flames in a Lean Quiescent Hydrogen-Air Mixture: Phenomenology and Detailed Flame Front Analysis
,”
Combust. Flame
,
162
(
2
), pp.
331
344
. 10.1016/j.combustflame.2014.08.005
33.
Giannakopoulos
,
G.
,
Gatzoulis
,
A.
,
Frouzakis
,
C.
,
Matalon
,
M.
, and
Tomboulides
,
A.
,
2015
, “
Consistent Definitions of Flame Displacement Speed and Markstein Length for Premixed Flame Propagation
,”
Combust. Flame
,
162
(
4
), pp.
1249
1264
. 10.1016/j.combustflame.2014.10.015
34.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
. 10.1016/0021-9991(86)90099-9
35.
Shi
,
X.
,
Chen
,
J.-Y.
, and
Chen
,
Y.
,
2017
, “
Laminar Burning Speeds of Stratified Methane, Propane, and n-Heptane Flames
,”
Combust. Flame
,
176
, pp.
38
47
. 10.1016/j.combustflame.2016.10.018
36.
Zabetakis
,
M. G.
,
1965
, “
Flammability Characteristics of Combustible Gases and Vapors
”, Technical Report, DTIC Document.
37.
Glassman
,
I.
,
1987
,
Combustion
, 2nd ed.,
Academic Press
,
San Diego, CA
.
38.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion
, 2nd ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.