Abstract

Chemical looping combustion (CLC) is an attractive technology to achieve inherent CO2 separation with low energy penalty. In CLC, the conventional one-step combustion process is replaced by two successive reactions in two reactors, a fuel reactor (FR) and an air reactor (AR). In addition to experimental techniques, computational fluid dynamics (CFD) is a powerful tool to simulate the flow and reaction characteristics in a CLC system. This review attempts to analyze and summarize the CFD simulations of CLC process. Various numerical approaches for prediction of CLC flow process are first introduced and compared. The simulations of CLC are presented for different types of reactors and fuels, and some key characteristics including flow regimes, combustion process, and gas-solid distributions are described in detail. The full-loop CLC simulations are then presented to reveal the coupling mechanisms of reactors in the whole system such as the gas leakage, solid circulation, redox reactions of the oxygen carrier, fuel conversion, etc. Examples of partial-loop CLC simulation are finally introduced to give a summary of different ways to simplify a CLC system by using appropriate boundary conditions.

References

1.
Hossain
,
M. M.
, and
de Lasa
,
H. I.
,
2008
, “
Chemical-Looping Combustion (CLC) for Inherent CO2 Separations—A Review
,”
Chem. Eng. Sci.
,
63
(
18
), pp.
4433
4451
. 10.1016/j.ces.2008.05.028
2.
Theo
,
W. L.
,
Lim
,
J. S.
,
Hashim
,
H.
,
Mustaffa
,
A. A.
, and
Ho
,
W. S.
,
2016
, “
Review of Pre-Combustion Capture and Ionic Liquid in Carbon Capture and Storage
,”
Appl. Energy
,
183
, pp.
1633
1663
. 10.1016/j.apenergy.2016.09.103
3.
Usman
,
M.
,
Hillestad
,
M.
, and
Deng
,
L.
,
2018
, “
Assessment of a Membrane Contactor Process for Pre-Combustion CO2 Capture by Modelling and Integrated Process Simulation
,”
Int. J. Greenhouse Gas Control
,
71
, pp.
95
103
. 10.1016/j.ijggc.2018.02.012
4.
Rúa
,
J.
,
Bui
,
M.
,
Nord
,
L. O.
, and
Mac Dowell
,
N.
,
2020
, “
Does CCS Reduce Power Generation Flexibility? A Dynamic Study of Combined Cycles with Post-Combustion CO2 Capture
,”
Int. J. Greenhouse Gas Control
,
95
, p.
102984
. 10.1016/j.ijggc.2020.102984
5.
Kárászová
,
M.
,
Zach
,
B.
,
Petrusová
,
Z.
,
Červenka
,
V.
,
Bobák
,
M.
,
Šyc
,
M.
, and
Izák
,
P.
,
2020
, “
Post-Combustion Carbon Capture by Membrane Separation, Review
,”
Sep. Purif. Technol.
,
238
, p.
116448
. 10.1016/j.seppur.2019.116448
6.
Herzog
,
H. J.
,
2001
, “
What Future for Carbon Capture and Sequestration?
,”
Environ. Sci. Technol.
,
35
(
7
), pp.
148A
153A
. 10.1021/es012307j
7.
Zhao
,
R.
,
Liu
,
L.
,
Zhao
,
L.
,
Deng
,
S.
,
Li
,
S.
, and
Zhang
,
Y.
,
2019
, “
A Comprehensive Performance Evaluation of Temperature Swing Adsorption for Post-Combustion Carbon Dioxide Capture
,”
Renewable Sustainable Energy Rev.
,
114
, p.
109285
. 10.1016/j.rser.2019.109285
8.
Pang
,
L.
,
Shao
,
Y.
,
Zhong
,
W.
,
Gong
,
Z.
, and
Liu
,
H.
,
2020
, “
Experimental Study of NOx Emissions in a 30 KWTh Pressurized Oxy-Coal Fluidized Bed Combustor
,”
Energy
,
194
, p.
116756
. 10.1016/j.energy.2019.116756
9.
Pang
,
L.
,
Shao
,
Y.
,
Zhong
,
W.
, and
Liu
,
H.
,
2020
, “
Experimental Study of SO2 Emissions and Desulfurization of Oxy-Coal Combustion in a 30 KWth Pressurized Fluidized Combustor
,”
Fuel
,
264
, p.
116795
. 10.1016/j.fuel.2019.116795
10.
Cao
,
Y.
,
He
,
B.
, and
Yan
,
L.
,
2019
, “
Process Simulation of a Dual Fluidized Bed Chemical Looping Air Separation With Mn-Based Oxygen Carrier
,”
Energy Convers. Manage.
,
196
, pp.
286
295
. 10.1016/j.enconman.2019.05.076
11.
Singh
,
D.
,
Croiset
,
E.
,
Douglas
,
P. L.
, and
Douglas
,
M. A.
,
2003
, “
Techno-Economic Study of CO2 Capture From an Existing Coal-Fired Power Plant: MEA Scrubbing vs. O2/CO2 Recycle Combustion
,”
Energy Convers. Manage.
,
44
(
19
), pp.
3073
3091
. 10.1016/S0196-8904(03)00040-2
12.
Wang
,
X.
,
Wang
,
X.
,
Kong
,
Z.
,
Shao
,
Y.
, and
Jin
,
B.
,
2020
, “
Auto-Thermal Operation and Optimization of Coal-Fueled Separated Gasification Chemical Looping Combustion in a Pilot-Scale Unit
,”
Chem. Eng. J.
,
383
, p.
123159
. 10.1016/j.cej.2019.123159
13.
Zhou
,
L.
,
Deshpande
,
K.
,
Zhang
,
X.
, and
Agarwal
,
R. K.
,
2020
, “
Process Simulation of Chemical Looping Combustion Using ASPEN Plus for a Mixture of Biomass and Coal With Various Oxygen Carriers
,”
Energy
,
195
, p.
116955
. 10.1016/j.energy.2020.116955
14.
Wang
,
X.
,
Wang
,
X.
,
Shao
,
Y.
, and
Jin
,
B.
,
2020
, “
Coal-Fueled Separated Gasification Chemical Looping Combustion Under Auto-Thermal Condition in a Two-Stage Reactor System
,”
Chem. Eng. J.
,
390
, p.
124641
. 10.1016/j.cej.2020.124641
15.
Mendiara
,
T.
,
Abad
,
A.
,
de Diego
,
L. F.
,
García-Labiano
,
F.
,
Gayán
,
P.
, and
Adánez
,
J.
,
2013
, “
Biomass Combustion in a CLC System Using an Iron Ore as an Oxygen Carrier
,”
Int. J. Greenhouse Gas Control
,
19
, pp.
322
330
. 10.1016/j.ijggc.2013.09.012
16.
Bayham
,
S.
,
McGiveron
,
O.
,
Tong
,
A.
,
Chung
,
E.
,
Kathe
,
M.
,
Wang
,
D.
,
Zeng
,
L.
, and
Fan
,
L. S.
,
2015
, “
Parametric and Dynamic Studies of an Iron-Based 25-KWth Coal Direct Chemical Looping Unit Using Sub-Bituminous Coal
,”
Appl. Energy
,
145
, pp.
354
363
. 10.1016/j.apenergy.2015.02.026
17.
Ge
,
H.
,
Shen
,
L.
,
Gu
,
H.
,
Song
,
T.
, and
Jiang
,
S.
,
2015
, “
Combustion Performance and Sodium Transformation of High-Sodium ZhunDong Coal During Chemical Looping Combustion With Hematite as Oxygen Carrier
,”
Fuel
,
159
, pp.
107
117
. 10.1016/j.fuel.2015.06.073
18.
Shao
,
Y.
,
Wang
,
X.
,
Jin
,
B.
,
Kong
,
Z.
,
Wang
,
X.
, and
Zhang
,
Y.
,
2019
, “
Gas–Solid Hydrodynamics of an IG-CLC System With a Two-Stage Counter-Flow Moving Bed Air Reactor
,”
Chem. Eng. Res. Des.
,
143
, pp.
100
113
. 10.1016/j.cherd.2019.01.004
19.
Shah
,
S.
,
Ritvanen
,
J.
,
Hyppänen
,
T.
, and
Kallio
,
S.
,
2013
, “
Wall Effects on Space Averaged Two-Fluid Model Equations for Simulations of Gas-Solid Flows in Risers
,”
Chem. Eng. Sci.
,
89
, pp.
206
215
. 10.1016/j.ces.2012.11.020
20.
Shuai
,
W.
,
Guodong
,
L.
,
Huilin
,
L.
,
Juhui
,
C.
,
Yurong
,
H.
, and
Jiaxing
,
W.
,
2011
, “
Fluid Dynamic Simulation in a Chemical Looping Combustion with Two Interconnected Fluidized Beds
,”
Fuel Process. Technol.
,
92
(
3
), pp.
385
393
. 10.1016/j.fuproc.2010.09.032
21.
Wang
,
X.
,
Jin
,
B.
,
Zhang
,
Y.
,
Zhong
,
W.
, and
Yin
,
S.
,
2011
, “
Multiphase Computational Fluid Dynamics (CFD) Modeling of Chemical Looping Combustion Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Coal Gas Combustion
,”
Energy Fuels
,
25
(
8
), pp.
3815
3824
. 10.1021/ef200403w
22.
Wang
,
X.
,
Jin
,
B.
,
Zhong
,
W.
,
Zhang
,
Y.
, and
Song
,
M.
,
2011
, “
Three-Dimensional Simulation of a Coal Gas Fueled Chemical Looping Combustion Process
,”
Int. J. Greenhouse Gas Control
,
5
(
6
), pp.
1498
1506
. 10.1016/j.ijggc.2011.08.007
23.
Qiu
,
X.
,
Wang
,
L.
,
Yang
,
N.
, and
Li
,
J.
,
2017
, “
A Simplified Two-Fluid Model Coupled with EMMS Drag for Gas-Solid Flows
,”
Powder Technol.
,
314
, pp.
299
314
. 10.1016/j.powtec.2016.09.002
24.
Xia
,
Z.
,
Fan
,
Y.
,
Wang
,
T.
,
Guo
,
X.
, and
Chen
,
C.
,
2015
, “
A TFM-KTGF Jetting Fluidized Bed Coal Gasification Model and Its Validations with Data of a Bench-Scale Gasifier
,”
Chem. Eng. Sci.
,
131
, pp.
12
21
. 10.1016/j.ces.2015.03.017
25.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
,
1992
, “
Hydrodynamics of Circulating Fluidized Beds: Kinetic Theory Approach
,”
Conference: 7th International Conference on Fluidization
,
Gold Coast (Australia)
, pp.
75
82
.
26.
Syamial
,
M.
, and
O’Brien
,
T. J.
,
1989
, “
Computer Simulation of Bubbles in a Fluidized Bed
,”
AIChE Symp. Ser.
,
85
, pp.
22
31
.
27.
Schaeffer
,
D. G.
,
1987
, “
Instability in the Evolution Equations Describing Incompressible Granular Flow
,”
J. Differ. Equations
,
66
(
1
), pp.
19
50
. 10.1016/0022-0396(87)90038-6
28.
Shuai
,
W.
,
Yunchao
,
Y.
,
Huilin
,
L.
,
Jiaxing
,
W.
,
Pengfei
,
X.
, and
Guodong
,
L.
,
2011
, “
Hydrodynamic Simulation of Fuel-Reactor in Chemical Looping Combustion Process
,”
Chem. Eng. Res. Des.
,
89
(
9
), pp.
1501
1510
. 10.1016/j.cherd.2010.11.002
29.
Lun
,
C. K. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
,
1984
, “
Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield
,”
J. Fluid Mech.
,
140
, pp.
223
256
. 10.1017/S0022112084000586
30.
Wu
,
Y.
,
Shi
,
X.
,
Liu
,
Y.
,
Wang
,
C.
,
Gao
,
J.
, and
Lan
,
X.
,
2020
, “
3D CPFD Simulations of Gas-Solids Flow in a CFB Downer with Cluster-Based Drag Model
,”
Powder Technol.
,
361
, pp.
400
413
. 10.1016/j.powtec.2019.07.044
31.
Peng
,
C.
,
Kong
,
B.
,
Zhou
,
J.
,
Sun
,
B.
,
Passalacqua
,
A.
,
Subramaniam
,
S.
, and
Fox
,
R. O.
,
2019
, “
Implementation of Pseudo-Turbulence Closures in an Eulerian–Eulerian Two-Fluid Model for Non-Isothermal Gas–Solid Flow
,”
Chem. Eng. Sci.
,
207
, pp.
663
671
. 10.1016/j.ces.2019.06.054
32.
Jung
,
J.
, and
Gamwo
,
I. K.
,
2008
, “
Multiphase CFD-Based Models for Chemical Looping Combustion Process : Fuel Reactor Modeling
,”
Powder Technol.
,
183
(
3
), pp.
401
409
. 10.1016/j.powtec.2008.01.019
33.
Mahalatkar
,
K.
,
Kuhlman
,
J.
,
Huckaby
,
E. D.
, and
Brien
,
T. O.
,
2011
, “
Computational Fluid Dynamic Simulations of Chemical Looping Fuel Reactors Utilizing Gaseous Fuels
,”
Chem. Eng. Sci.
,
66
(
3
), pp.
469
479
. 10.1016/j.ces.2010.11.003
34.
Porrazzo
,
R.
,
White
,
G.
, and
Ocone
,
R.
,
2016
, “
Fuel Reactor Modelling for Chemical Looping Combustion: From Micro-Scale to Macro-Scale
,”
Fuel
,
175
, pp.
87
98
. 10.1016/j.fuel.2016.01.041
35.
Zhang
,
Y.
,
Chao
,
Z.
, and
Jakobsen
,
H. A.
,
2017
, “
Modelling and Simulation of Chemical Looping Combustion Process in a Double Loop Circulating Fluidized Bed Reactor
,”
Chem. Eng. J.
,
320
, pp.
271
282
. 10.1016/j.cej.2017.03.046
36.
Shrestha
,
S.
,
Kuang
,
S.
,
Yu
,
A.
, and
Zhou
,
Z.
,
2019
, “
Particle Shape Effect on Bubble Dynamics in Central Air Jet Pseudo-2D Fluidized Beds: A CFD-DEM Study
,”
Chem. Eng. Sci.
,
201
, pp.
448
466
. 10.1016/j.ces.2019.02.030
37.
Ariyaratne
,
W. K. H.
,
Manjula
,
E. V. P. J.
,
Ratnayake
,
C.
, and
Melaaen
,
M. C.
,
2018
, “
CFD Approaches for Modeling Gas-Solids Multiphase Flows—A Review
,”
Proceedings of the 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, 57th SIMS Conference on Simulation Models, SIMS 2016
,
142
, pp.
680
686
.
38.
Li
,
J.
,
Agarwal
,
R. K.
,
Zhou
,
L.
, and
Yang
,
B.
,
2019
, “
Investigation of a Bubbling Fluidized Bed Methanation Reactor by Using CFD-DEM and Approximate Image Processing Method
,”
Chem. Eng. Sci.
,
207
, pp.
1107
1120
. 10.1016/j.ces.2019.07.016
39.
Xie
,
J.
,
Zhong
,
W.
,
Shao
,
Y.
, and
Li
,
K.
,
2019
, “
Coupling of CFD-DEM and Reaction Model for 3D Fluidized Beds
,”
Powder Technol.
,
353
, pp.
72
83
. 10.1016/j.powtec.2019.05.001
40.
Namdarkedenji
,
R.
,
Hashemnia
,
K.
, and
Emdad
,
H.
,
2018
, “
Effect of Flow Pulsation on Fluidization Degree of Gas-Solid Fluidized Beds by Using Coupled CFD-DEM
,”
Adv. Powder Technol.
,
29
(
12
), pp.
3527
3541
. 10.1016/j.apt.2018.09.033
41.
Jia
,
C.
,
Li
,
J.
,
Chen
,
J.
,
Cui
,
S.
,
Liu
,
H.
, and
Wang
,
Q.
,
2020
, “
Simulation and Prediction of Co-Combustion of Oil Shale Retorting Solid Waste and Cornstalk in Circulating Fluidized Bed Using CPFD Method
,”
Appl. Therm. Eng.
,
165
, p.
113574
. 10.1016/j.applthermaleng.2019.03.145
42.
Nakhaei
,
M.
,
Wu
,
H.
,
Grévain
,
D.
,
Jensen
,
L. S.
,
Glarborg
,
P.
, and
Dam–Johansen
,
K.
,
2019
, “
CPFD Simulation of Petcoke and SRF Co–Firing in a Full–Scale Cement Calciner
,”
Fuel Process. Technol.
,
196
, p.
106153
. 10.1016/j.fuproc.2019.106153
43.
Wang
,
Q.
,
Yang
,
H.
,
Wang
,
P.
,
Lu
,
J.
,
Liu
,
Q.
,
Zhang
,
H.
,
Wei
,
L.
, and
Zhang
,
M.
,
2014
, “
Application of CPFD Method in the Simulation of a Circulating Fluidized Bed with a Loop Seal, Part I-Determination of Modeling Parameters
,”
Powder Technol.
,
253
, pp.
814
821
. 10.1016/j.powtec.2013.11.041
44.
Zhang
,
Y.
,
Liang
,
Y.
,
Wang
,
M.
,
Bi
,
X.
, and
Lu
,
C.
,
2019
, “
Experimental Study and CPFD Simulation on Circumferential Flow Heterogeneity in a Disc-Donut Catalyst Stripper
,”
Chem. Eng. J.
,
391
, pp.
123567
.
45.
Deng
,
Z.
,
Xiao
,
R.
,
Jin
,
B. S.
,
Song
,
Q.
, and
Huang
,
H.
,
2008
, “
Multiphase CFD Modeling for a Chemical Looping Combustion Process (Fuel Reactor)
,”
Chem. Eng. Technol.
,
31
(
12
), pp.
1754
1766
. 10.1002/ceat.200800341
46.
Deng
,
Z.
,
Xiao
,
R.
,
Jin
,
B.
, and
Song
,
Q.
,
2009
, “
Numerical Simulation of Chemical Looping Combustion Process with CaSO4 Oxygen Carrier
,”
Int. J. Greenhouse Gas Control
,
3
(
4
), pp.
368
375
. 10.1016/j.ijggc.2008.11.004
47.
Kruggel-emden
,
H.
,
Rickelt
,
S.
,
Stepanek
,
F.
, and
Munjiza
,
A.
,
2010
, “
Development and Testing of an Interconnected Multiphase CFD-Model for Chemical Looping Combustion
,”
Chem. Eng. Sci.
,
65
(
16
), pp.
4732
4745
. 10.1016/j.ces.2010.05.022
48.
Kruggel-Emden
,
H.
,
Stepanek
,
F.
, and
Munjiza
,
A.
,
2011
, “
A Study on the Role of Reaction Modeling in Multi-Phase CFD-Based Simulations of Chemical Looping Combustion
,”
Oil Gas Sci. Technol.
,
66
(
2
), pp.
313
331
. 10.2516/ogst/2010031
49.
Mahalatkar
,
K.
,
Kuhlman
,
J.
,
Huckaby
,
E. D.
, and
O’Brien
,
T.
,
2011
, “
CFD Simulation of a Chemical-Looping Fuel Reactor Utilizing Solid Fuel
,”
Chem. Eng. Sci.
,
66
(
16
), pp.
3617
3627
. 10.1016/j.ces.2011.04.025
50.
Mahalatkar
,
K.
,
Kuhlman
,
J.
,
Huckaby
,
E. D.
, and
Brien
,
T. O.
,
2011
, “
Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel
,”
Oil Gas Sci. Technol.
,
66
(
2
), pp.
301
311
. 10.2516/ogst/2010021
51.
Wang
,
S.
,
Gao
,
J.
,
Lu
,
H.
,
Liu
,
G.
,
Xu
,
P.
, and
Sun
,
L.
,
2012
, “
Simulation of Flow Behavior of Particles by Cluster Structure-Dependent Drag Coefficient Model for Chemical Looping Combustion Process: Air Reactor Modeling
,”
Fuel Process. Technol.
,
104
, pp.
219
233
. 10.1016/j.fuproc.2012.04.041
52.
Wang
,
S.
,
Yang
,
Y.
,
Lu
,
H.
,
Xu
,
P.
, and
Sun
,
L.
,
2012
, “
Computational Fluid Dynamic Simulation Based Cluster Structures-Dependent Drag Coefficient Model in Dual Circulating Fluidized Beds of Chemical Looping Combustion
,”
Ind. Eng. Chem. Res.
,
51
(
3
), pp.
1396
1412
. 10.1021/ie201797p
53.
Wang
,
X.
,
Jin
,
B.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Liu
,
X.
,
2013
, “
Three Dimensional Modeling of a Coal-Fired Chemical Looping Combustion Process in the Circulating Fluidized Bed Fuel Reactor
,”
Energy Fuels
,
27
(
4
), pp.
2173
2184
. 10.1021/ef302075n
54.
Peng
,
Z.
,
Doroodchi
,
E.
,
Alghamdi
,
Y.
, and
Moghtaderi
,
B.
,
2013
, “
Mixing and Segregation of Solid Mixtures in Bubbling Fl Uidized Beds Under Conditions Pertinent to the Fuel Reactor of a Chemical Looping System
,”
Powder Technol.
,
235
, pp.
823
837
. 10.1016/j.powtec.2012.11.047
55.
Harichandan
,
A. B.
, and
Shamim
,
T.
,
2014
, “
CFD Analysis of Bubble Hydrodynamics in a Fuel Reactor for a Hydrogen-Fueled Chemical Looping Combustion System
,”
Energy Convers. Manage.
,
86
, pp.
1010
1022
. 10.1016/j.enconman.2014.06.027
56.
Zhang
,
Z.
,
Zhou
,
L.
, and
Agarwal
,
R.
,
2014
, “
Transient Simulations of Spouted Fluidized Bed for Coal-Direct Chemical Looping Combustion
,”
Energy Fuels
,
28
(
2
), pp.
1548
1560
. 10.1021/ef402521x
57.
Parker
,
J. M.
,
2014
, “
CFD Model for the Simulation of Chemical Looping Combustion
,”
Powder Technol.
,
265
, pp.
47
53
. 10.1016/j.powtec.2014.01.027
58.
Guan
,
Y.
,
Chang
,
J.
,
Zhang
,
K.
,
Wang
,
B.
, and
Sun
,
Q.
,
2014
, “
Three-Dimensional CFD Simulation of Hydrodynamics in an Interconnected Fluidized Bed for Chemical Looping Combustion
,”
Powder Technol.
,
268
, pp.
316
328
. 10.1016/j.powtec.2014.08.046
59.
Wang
,
S.
,
Lu
,
H.
,
Zhao
,
F.
, and
Liu
,
G.
,
2014
, “
CFD Studies of Dual Circulating Fluidized Bed Reactors for Chemical Looping Combustion Processes
,”
Chem. Eng. J.
,
236
, pp.
121
130
. 10.1016/j.cej.2013.09.033
60.
Bougamra
,
A.
, and
Huilin
,
L.
,
2014
, “
Modeling of Chemical Looping Combustion of Methane Using a Ni-Based Oxygen Carrier
,”
Energy Fuels
,
28
(
5
), pp.
3420
3429
. 10.1021/ef500114z
61.
Alobaid
,
F.
,
Ohlemüller
,
P.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2015
, “
Extended Euler–Euler Model for the Simulation of a 1 MWth Chemical–Looping Pilot Plant
,”
Energy
,
93
, pp.
2395
2405
. 10.1016/j.energy.2015.10.107
62.
Banerjee
,
S.
, and
Agarwal
,
R.
,
2015
, “
Transient Reacting Flow Simulation of Spouted Fluidized Bed for Coal-Direct Chemical Looping Combustion with Different Fe-Based Oxygen Carriers
,”
Appl. Energy
,
160
, pp.
552
560
. 10.1016/j.apenergy.2015.10.013
63.
Peng
,
Z.
,
Doroodchi
,
E.
,
Alghamdi
,
Y. A.
,
Shah
,
K.
,
Luo
,
C.
, and
Moghtaderi
,
B.
,
2015
, “
CFD-DEM Simulation of Solid Circulation Rate in the Cold Flow Model of Chemical Looping Systems
,”
Chem. Eng. Res. Des.
,
95
, pp.
262
280
. 10.1016/j.cherd.2014.11.005
64.
Wang
,
S.
,
Chen
,
J.
,
Lu
,
H.
,
Liu
,
G.
, and
Sun
,
L.
,
2015
, “
Multi-Scale Simulation of Chemical Looping Combustion in Dual Circulating Fluidized Bed
,”
Appl. Energy
,
155
, pp.
719
727
. 10.1016/j.apenergy.2015.05.109
65.
Su
,
M.
,
Zhao
,
H.
, and
Ma
,
J.
,
2015
, “
Computational Fluid Dynamics Simulation for Chemical Looping Combustion of Coal in a Dual Circulation Fluidized Bed
,”
Energy Convers. Manage.
,
105
, pp.
1
12
. 10.1016/j.enconman.2015.07.042
66.
Geng
,
C.
,
Zhong
,
W.
,
Shao
,
Y.
,
Chen
,
D.
, and
Jin
,
B.
,
2015
, “
Computational Study of Solid Circulation in Chemical-Looping Combustion Reactor Model
,”
Powder Technol.
,
276
, pp.
144
155
. 10.1016/j.powtec.2015.01.077
67.
Banerjee
,
S.
, and
Agarwal
,
R. K.
,
2016
, “
An Eulerian Approach to Computational Fluid Dynamics Simulation of a Chemical-Looping Combustion Reactor With Chemical Reactions
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042201
. 10.1115/1.4031968
68.
Hamilton
,
M. A.
,
Whitty
,
K. J.
, and
Lighty
,
J. S.
,
2016
, “
Numerical Simulation Comparison of Two Reactor Configurations for Chemical Looping Combustion and Chemical Looping With Oxygen Uncoupling
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p. 042213. 10.1115/1.4033108
69.
Hamilton
,
M. A.
,
Whitty
,
K. J.
, and
Lighty
,
J. A. S.
,
2016
, “
Incorporating Oxygen Uncoupling Kinetics Into Computational Fluid Dynamic Simulations of a Chemical Looping System
,”
Energy Technol.
,
4
(
10
), pp.
1237
1246
. 10.1002/ente.201600031
70.
Ben-Mansour
,
R.
,
Li
,
H.
, and
Habib
,
M. A.
,
2017
, “
Effects of Oxygen Carrier Mole Fraction, Velocity Distribution on Conversion Performance Using an Experimentally Validated Mathematical Model of a CLC Fuel Reactor
,”
Appl. Energy
,
208
, pp.
803
819
. 10.1016/j.apenergy.2017.09.067
71.
Sornumpol
,
R.
,
Uraisakul
,
W.
,
Kuchonthara
,
P.
,
Chalermsinsuwan
,
B.
, and
Piumsomboon
,
P.
,
2017
, “
CFD Simulation of Fuel Reactor in Chemical Looping Combustion
,”
Energy Procedia
,
138
, pp.
979
984
. 10.1016/j.egypro.2017.10.096
72.
Chen
,
L.
,
Yang
,
X.
,
Li
,
G.
,
Li
,
X.
, and
Snape
,
C.
,
2017
, “
Prediction of Bubble Fluidisation During Chemical Looping Combustion Using CFD Simulation
,”
Comput. Chem. Eng.
,
99
, pp.
82
95
. 10.1016/j.compchemeng.2017.01.009
73.
Sharma
,
R.
,
May
,
J.
,
Alobaid
,
F.
,
Ohlemüller
,
P.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2017
, “
Euler-Euler CFD Simulation of the Fuel Reactor of a 1 MWth Chemical-Looping Pilot Plant: Influence of the Drag Models and Specularity Coefficient
,”
Fuel
,
200
, pp.
435
446
. 10.1016/j.fuel.2017.03.076
74.
Menon
,
K. G.
, and
Patnaikuni
,
V. S.
,
2017
, “
CFD Simulation of Fuel Reactor for Chemical Looping Combustion of Indian Coal
,”
Fuel
,
203
, pp.
90
101
. 10.1016/j.fuel.2017.04.084
75.
Zhang
,
Y.
,
Chao
,
Z.
, and
Jakobsen
,
H. A.
,
2017
, “
Modelling and Simulation of Hydrodynamics in Double Loop Circulating Fluidized bed Reactor for Chemical Looping Combustion Process
,”
Powder Technol.
,
310
, pp.
35
45
. 10.1016/j.powtec.2017.01.028
76.
Zhang
,
Y.
,
Langørgen
,
Ø
,
Saanum
,
I.
,
Chao
,
Z.
, and
Jakobsen
,
H. A.
,
2017
, “
Modeling and Simulation of Chemical Looping Combustion Using a Copper-Based Oxygen Carrier in a Double-Loop Circulating Fluidized Bed Reactor System
,”
Ind. Eng. Chem. Res.
,
56
(
50
), pp.
14754
14765
. 10.1021/acs.iecr.7b03655
77.
Shao
,
Y.
,
Zhang
,
Y.
,
Wang
,
X.
,
Wang
,
X.
,
Jin
,
B.
, and
Liu
,
H.
,
2017
, “
Three-Dimensional Full Loop Modeling and Optimization of an In Situ Gasification Chemical Looping Combustion System
,”
Energy Fuels
,
31
(
12
), pp.
13859
13870
. 10.1021/acs.energyfuels.7b02119
78.
Banerjee
,
S.
, and
Agarwal
,
R. K.
,
2018
, “
Computational Fluid Dynamics Simulations of a Binary Particle Bed in a Riser-Based Carbon Stripper for Chemical Looping Combustion
,”
Powder Technol.
,
325
, pp.
361
367
. 10.1016/j.powtec.2017.11.032
79.
May
,
J.
,
Alobaid
,
F.
,
Ohlemüller
,
P.
,
Stroh
,
A.
,
Ströhle
,
J.
, and
Epple
,
B.
,
2018
, “
Reactive Two-Fluid Model for Chemical-Looping Combustion—Simulation of Fuel and Air Reactors
,”
Int. J. Greenhouse Gas Control
,
76
, pp.
175
192
. 10.1016/j.ijggc.2018.06.023
80.
Luo
,
C.
,
Peng
,
Z.
,
Doroodchi
,
E.
, and
Moghtaderi
,
B.
,
2018
, “
A Three-Dimensional Hot Flow Model for Simulating the Alumina Encapsulated NI-NIO Methane-Air CLC System Based on the Computational Fluid Dynamics-Discrete Element Method
,”
Fuel
,
224
, pp.
388
400
. 10.1016/j.fuel.2018.03.086
81.
Li
,
S.
, and
Shen
,
Y.
,
2020
, “
Numerical Study of Gas-Solid Flow Behaviors in the Air Reactor of Coal-Direct Chemical Looping Combustion with Geldart D Particles
,”
Powder Technol.
,
361
, pp.
74
86
. 10.1016/j.powtec.2019.10.045
82.
Yin
,
W.
,
Wang
,
S.
,
Zhang
,
K.
, and
He
,
Y.
,
2020
, “
Numerical Investigation of in Situ Gasification Chemical Looping Combustion of Biomass in a Fluidized Bed Reactor
,”
Renewable Energy
,
151
, pp.
216
225
. 10.1016/j.renene.2019.11.016
83.
Means
,
N. C.
,
Burgess
,
W. A.
,
Howard
,
B. H.
,
Smith
,
M. W.
,
Wang
,
P.
, and
Shekhawat
,
D.
,
2019
, “
Examining and Modeling Oxygen Uncoupling Kinetics of Cu-Based Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU) in a Drop Tube Fluidized Bed Reactor
,”
Energy Fuels
,
33
(
6
), pp.
5610
5619
. 10.1021/acs.energyfuels.9b00338
84.
Lin
,
J.
,
Luo
,
K.
,
Sun
,
L.
,
Wang
,
S.
,
Hu
,
C.
, and
Fan
,
J.
,
2019
, “
Numerical Investigation of Nickel-Copper Oxygen Carriers in Chemical-Looping Combustion Process with Zero Emission of CO and H2
,”
Energy Fuels
,
33
(
11
), pp.
12096
12105
. 10.1021/acs.energyfuels.9b03183
85.
Hamidouche
,
Z.
,
Masi
,
E.
,
Fede
,
P.
,
Simonin
,
O.
,
Mayer
,
K.
, and
Penthor
,
S.
,
2019
, “
Unsteady Three-Dimensional Theoretical Model and Numerical Simulation of a 120 KW Chemical Looping Combustion Pilot Plant
,”
Chem. Eng. Sci.
,
193
, pp.
102
119
. 10.1016/j.ces.2018.08.032
86.
Chen
,
X.
,
Ma
,
J.
,
Tian
,
X.
,
Wan
,
J.
, and
Zhao
,
H.
,
2019
, “
CPFD Simulation and Optimization of a 50 KWth Dual Circulating Fluidized Bed Reactor for Chemical Looping Combustion of Coal
,”
Int. J. Greenhouse Gas Control
,
90
, p.
102800
. 10.1016/j.ijggc.2019.102800
87.
Chen
,
X.
,
Ma
,
J.
,
Tian
,
X.
,
Xu
,
Z.
, and
Zhao
,
H.
,
2019
, “
Numerical Investigation on the Improvement of Carbon Conversion in a Dual Circulating Fluidized Bed Reactor for Chemical Looping Combustion of Coal
,”
Energy Fuels
,
33
(
12
), pp.
12801
12813
. 10.1021/acs.energyfuels.9b02963
88.
Reinking
,
Z.
,
Shim
,
H. S.
,
Whitty
,
K. J.
, and
Lighty
,
J. A. S.
,
2019
, “
Computational Simulation of a 100 KW Dual Circulating Fluidized Bed Reactor Processing Coal by Chemical Looping with Oxygen Uncoupling
,”
Int. J. Greenhouse Gas Control
,
90
, p.
102795
. 10.1016/j.ijggc.2019.102795
89.
Wang
,
X.
,
Shao
,
Y.
,
Jin
,
B.
, and
Zhang
,
Y.
,
2020
, “
Three-Dimensional Multiphase Full-Loop Simulation of Directional Separation of Binary Particle Mixtures in High-Flux Coal-Direct Chemical-Looping Combustion System
,”
Particuology
,
49
, pp.
179
190
. 10.1016/j.partic.2019.04.004
90.
Shao
,
Y.
,
Agarwal
,
R. K.
,
Wang
,
X.
, and
Jin
,
B.
,
2020
, “
Numerical Simulation of a 3D Full Loop IG-CLC System Including a Two-Stage Counter-Flow Moving Bed Air Reactor
,”
Chem. Eng. Sci.
,
217
, p.
115502
. 10.1016/j.ces.2020.115502
91.
Wang
,
X.
,
Wang
,
X.
,
Shao
,
Y.
, and
Jin
,
B.
,
2020
, “
Three-Dimensional Modelling of the Multiphase Hydrodynamics in a Separated-Gasification Chemical Looping Combustion Unit During Full-Loop Operation
,”
J. Cleaner Prod.
,
275
, p.
122782
. 10.1016/j.jclepro.2020.122782
92.
Lyngfelt
,
A.
,
Leckner
,
B.
, and
Mattisson
,
T.
,
2001
, “
A Fluidized-Bed Combustion Process with Inherent CO2 Separation; Application of Chemical-Looping Combustion
,”
Chem. Eng. Sci.
,
56
(
10
), pp.
3101
3113
. 10.1016/S0009-2509(01)00007-0
93.
Johansson
,
E.
,
Lyngfelt
,
A.
,
Mattisson
,
T.
, and
Johnsson
,
F.
,
2003
, “
Gas Leakage Measurements in a Cold Model of an Interconnected Fluidized Bed for Chemical-Looping Combustion
,”
Powder Technol.
,
134
(
3
), pp.
210
217
. 10.1016/S0032-5910(03)00125-6
94.
de Diego
,
L. F.
,
García-Labiano
,
F.
,
Gayán
,
P.
,
Celaya
,
J.
,
Palacios
,
J. M.
, and
Adánez
,
J.
,
2007
, “
Operation of a 10 KWTh Chemical-Looping Combustor During 200 h with a CuO-Al2O3 Oxygen Carrier
,”
Fuel
,
86
(
7–8
), pp.
1036
1045
. 10.1016/j.fuel.2006.10.004
95.
Cuadrat
,
A.
,
Abad
,
A.
,
García-Labiano
,
F.
,
Gayán
,
P.
,
de Diego
,
L. F.
, and
Adánez
,
J.
,
2011
, “
The Use of Ilmenite as Oxygen-Carrier in a 500WTh Chemical-Looping Coal Combustion Unit
,”
Int. J. Greenhouse Gas Control
,
5
(
6
), pp.
1630
1642
. 10.1016/j.ijggc.2011.09.010
96.
Thon
,
A.
,
Kramp
,
M.
,
Hartge
,
E. U.
,
Heinrich
,
S.
, and
Werther
,
J.
,
2014
, “
Operational Experience with a System of Coupled Fluidized Beds for Chemical Looping Combustion of Solid Fuels Using Ilmenite as Oxygen Carrier
,”
Appl. Energy
,
118
, pp.
309
317
. 10.1016/j.apenergy.2013.11.023
97.
Shen
,
L.
,
Wu
,
J.
,
Xiao
,
J.
,
Song
,
Q.
, and
Xiao
,
R.
,
2009
, “
Chemical-Looping Combustion of Biomass in a 10 KWth Reactor with Iron Oxide as an Oxygen Carrier
,”
Energy Fuels
,
23
(
5
), pp.
2498
2505
. 10.1021/ef900033n
98.
Shen
,
L.
,
Wu
,
J.
,
Gao
,
Z.
, and
Xiao
,
J.
,
2010
, “
Characterization of Chemical Looping Combustion of Coal in a 1 KWth Reactor with a Nickel-Based Oxygen Carrier
,”
Combust. Flame
,
157
(
5
), pp.
934
942
. 10.1016/j.combustflame.2009.10.009
99.
Gu
,
H.
,
Shen
,
L.
,
Xiao
,
J.
,
Zhang
,
S.
, and
Song
,
T.
,
2011
, “
Chemical Looping Combustion of Biomass/Coal with Natural Iron Ore as Oxygen Carrier in a Continuous Reactor
,”
Energy Fuels
,
25
(
1
), pp.
446
455
. 10.1021/ef101318b
100.
Markström
,
P.
,
Linderholm
,
C.
, and
Lyngfelt
,
A.
,
2013
, “
Chemical-Looping Combustion of Solid Fuels—Design and Operation of a 100 KW Unit with Bituminous Coal
,”
Int. J. Greenhouse Gas Control
,
15
, pp.
150
162
. 10.1016/j.ijggc.2013.01.048
101.
Abad
,
A.
,
Pérez-Vega
,
R.
,
de Diego
,
L. F.
,
García-Labiano
,
F.
,
Gayán
,
P.
, and
Adánez
,
J.
,
2015
, “
Design and Operation of a 50 KWth Chemical Looping Combustion (CLC) Unit for Solid Fuels
,”
Appl. Energy
,
157
, pp.
295
303
. 10.1016/j.apenergy.2015.03.094
102.
Kolbitsch
,
P.
,
Pröll
,
T.
,
Bolhar-Nordenkampf
,
J.
, and
Hofbauer
,
H.
,
2009
, “
Operating Experience with Chemical Looping Combustion in a 120 KW Dual Circulating Fluidized Bed (DCFB) Unit
,”
Energy Proc.
,
1
(
1
), pp.
1465
1472
. 10.1016/j.egypro.2009.01.192
103.
Ma
,
J.
,
Zhao
,
H.
,
Tian
,
X.
,
Wei
,
Y.
,
Zhang
,
Y.
, and
Zheng
,
C.
,
2015
, “
Continuous Operation of Interconnected Fluidized Bed Reactor for Chemical Looping Combustion of CH4 Using Hematite as Oxygen Carrier
,”
Energy Fuels
,
29
(
5
), pp.
3257
3267
. 10.1021/ef502881x
104.
Ma
,
J.
,
Zhao
,
H.
,
Tian
,
X.
,
Wei
,
Y.
,
Rajendran
,
S.
,
Zhang
,
Y.
,
Bhattacharya
,
S.
, and
Zheng
,
C.
,
2015
, “
Chemical Looping Combustion of Coal in a 5 KWth Interconnected Fluidized Bed Reactor Using Hematite as Oxygen Carrier
,”
Appl. Energy
,
157
, pp.
304
313
. 10.1016/j.apenergy.2015.03.124
105.
Ma
,
J.
,
Tian
,
X.
,
Wang
,
C.
,
Chen
,
X.
, and
Zhao
,
H.
,
2018
, “
Performance of a 50 KWth Coal-Fuelled Chemical Looping Combustor
,”
Int. J. Greenhouse Gas Control
,
75
, pp.
98
106
. 10.1016/j.ijggc.2018.05.002
106.
Ströhle
,
J.
,
Orth
,
M.
, and
Epple
,
B.
,
2014
, “
Design and Operation of a 1 MWTh Chemical Looping Plant
,”
Appl. Energy
,
113
, pp.
1490
1495
. 10.1016/j.apenergy.2013.09.008
107.
Kim
,
H. R.
,
Wang
,
D.
,
Zeng
,
L.
,
Bayham
,
S.
,
Tong
,
A.
,
Chung
,
E.
,
Kathe
,
M. V.
,
Luo
,
S.
,
McGiveron
,
O.
,
Wang
,
A.
,
Sun
,
Z.
,
Chen
,
D.
, and
Fan
,
L. S.
,
2013
, “
Coal Direct Chemical Looping Combustion Process: Design and Operation of a 25-KWth Sub-Pilot Unit
,”
Fuel
,
108
, pp.
370
384
. 10.1016/j.fuel.2012.12.038
108.
Bayham
,
S. C.
,
Kim
,
H. R.
,
Wang
,
D.
,
Tong
,
A.
,
Zeng
,
L.
,
McGiveron
,
O.
,
Kathe
,
M. V.
,
Chung
,
E.
,
Wang
,
W.
,
Wang
,
A.
,
Majumder
,
A.
, and
Fan
,
L. S.
,
2013
, “
Iron-Based Coal Direct Chemical Looping Combustion Process: 200-h Continuous Operation of a 25-KWth Subpilot Unit
,”
Energy Fuels
,
27
(
3
), pp.
1347
1356
. 10.1021/ef400010s
109.
Song
,
T.
, and
Shen
,
L.
,
2018
, “
Review of Reactor for Chemical Looping Combustion of Solid Fuels
,”
Int. J. Greenhouse Gas Control
,
76
, pp.
92
110
. 10.1016/j.ijggc.2018.06.004
110.
Nandy
,
A.
,
Loha
,
C.
,
Gu
,
S.
,
Sarkar
,
P.
,
Karmakar
,
M. K.
, and
Chatterjee
,
P. K.
,
2016
, “
Present Status and Overview of Chemical Looping Combustion Technology
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
597
619
. 10.1016/j.rser.2016.01.003
111.
Bischi
,
A.
,
Langørgen
,
Ø
,
Morin
,
J.-X.
,
Bakken
,
J.
,
Ghorbaniyan
,
M.
,
Bysveen
,
M.
, and
Bolland
,
O.
,
2012
, “
Hydrodynamic Viability of Chemical Looping Processes by Means of Cold Flow Model Investigation
,”
Appl. Energy
,
97
, pp.
201
216
. 10.1016/j.apenergy.2011.12.051
You do not currently have access to this content.