Abstract

This paper presents a computational study on air-fuel combustion of bituminous coal and liquified petroleum gas (LPG) in a 16 kWth test facility with a coflow-swirl burner. The performance of three turbulence models is investigated for the furnace operated under both air-staged and un-staged conditions by comparing their predictions with the reported measurements of temperature and species concentrations. This comparison shows that the shear stress transport (SST) k–ω model and SST k–ω model with low-Re correction predict the profiles of temperature and species concentrations reasonably well, but significantly underpredict the temperature in the furnace core at axial locations away from the burner. On the other hand, the transition SST k–ω model provides better overall congruency with the measured temperature and species concentrations when compared with the other turbulence models used, as indicated by relatively higher values of the Pearson correlation coefficient at locations away from the burner. The present high-fidelity computational model developed is also capable of accurately simulating the effect of coal particle size on the furnace environment, which is verified by the match between the computational predictions and the experimental results for two different sized coal samples. The model is also used to investigate the effect of coal particle size on the internal recirculation zone (IRZ) and the reattachment length (LR) for the same inlet swirl number (SN). A decrease of nearly 50% in the coal sample size results in the increase of LR and IRZ length by 20% and 82.6%, respectively.

References

1.
Sahu
,
N. K.
,
Kumar
,
M.
, and
Dewan
,
A.
,
2019
, “
Computational Study of Coal Combustion in an Entrained Flow Furnace
,”
AIP Conf. Proc.
,
2148
(
1
), p.
030055
.
2.
Tufano
,
G. L.
,
Stein
,
O. T.
,
Kronenburg
,
A.
,
Frassoldati
,
A.
,
Faravelli
,
T.
,
Deng
,
L.
,
Kempf
,
A. M.
,
Vascellari
,
M.
, and
Hasse
,
C.
,
2016
, “
Resolved Flow Simulation of Pulverized Coal Particle Devolatilization and Ignition in Air- and O2/CO2-Atmospheres
,”
Fuel
,
186
, pp.
285
292
. 10.1016/j.fuel.2016.08.073
3.
Gopan
,
A.
,
Kumfer
,
B. M.
, and
Axelbaum
,
R. L.
,
2015
, “
Effect of Operating Pressure and Fuel Moisture on Net Plant Efficiency of a Staged, Pressurized Oxy-Combustion Power Plant
,”
Int. J. Greenhouse Gas Control
,
39
, pp.
390
396
. 10.1016/j.ijggc.2015.05.014
4.
Xia
,
F.
,
Yang
,
Z.
,
Adeosun
,
A.
,
Gopan
,
A.
,
Kumfer
,
B. M.
, and
Axelbaum
,
R. L.
,
2016
, “
Pressurized Oxy-Combustion With Low Flue Gas Recycle: Computational Fluid Dynamic Simulations of Radiant Boilers
,”
Fuel
,
181
, pp.
1170
1178
. 10.1016/j.fuel.2016.04.023
5.
Duan
,
L.
,
Sun
,
S.
,
Yue
,
L.
,
Qu
,
W.
, and
Yang
,
Y.
,
2015
, “
Study on a New IGCC (Integrated Gasification Combined Cycle) System With CO2 Capture by Integrating MCFC (Molten Carbonate Fuel Cell)
,”
Energy
,
87
, pp.
490
503
. 10.1016/j.energy.2015.05.011
6.
Franchetti
,
B. M.
,
Marincola
,
F. C.
,
Martinez
,
S. N.
, and
Kempf
,
A. M.
,
2016
, “
Large Eddy Simulation of a 100 kWth Swirling Oxy-Coal Furnace
,”
Fuel
,
181
, pp.
591
502
. 10.1016/j.fuel.2016.05.015
7.
Niu
,
Y.
,
Liu
,
X.
,
Zhu
,
Y.
,
Tan
,
H.
, and
Wang
,
X.
,
2015
, “
Combustion Characteristics of a Four-Wall Tangential Firing Pulverized Coal Furnace
,”
Appl. Therm. Eng.
,
90
, pp.
471
477
. 10.1016/j.applthermaleng.2015.06.099
8.
Li
,
Z.
,
Li
,
S.
,
Zhu
,
Q.
,
Zhang
,
X.
,
Li
,
G.
,
Liu
,
Y.
,
Chen
,
Z.
, and
Wu
,
J.
,
2014
, “
Effects of Particle Concentration Variation in the Primary Air Duct on Combustion Characteristics and NOx Emissions in a 0.5-MW Test Facility With Pulverized Coal Swirl Burners
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
859
868
. 10.1016/j.applthermaleng.2014.08.041
9.
Moon
,
C.
,
Sung
,
Y.
,
Eom
,
S.
, and
Choi
,
G.
,
2015
, “
NOx Emissions and Burnout Characteristics of Bituminous Coal, Lignite, and Their Blends in a Pulverized Coal-Fired Furnace
,”
Exp. Therm. Fluid. Sci.
,
62
, pp.
99
108
. 10.1016/j.expthermflusci.2014.12.005
10.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2013
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
. 10.1115/1.4007911
11.
Sung
,
Y.
,
Moon
,
C.
,
Eom
,
S.
,
Choi
,
G.
, and
Kim
,
D.
,
2016
, “
Coal-Particle Size Effects on NO Reduction and Burnout Characteristics With Air-Staged Combustion in a Pulverized Coal-Fired Furnace
,”
Fuel
,
182
, pp.
558
567
. 10.1016/j.fuel.2016.05.122
12.
Backreedy
,
R. I.
,
Fletcher
,
L. M.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Williams
,
A.
,
2006
, “
Modelling Pulverised Coal Combustion Using a Detailed Coal Combustion Model
,”
Combust. Sci. Technol.
,
178
(
4
), pp.
763
787
. 10.1080/00102200500248532
13.
Edge
,
P.
,
Gubba
,
S. R.
,
Ma
,
L.
,
Porter
,
R.
,
Pourkashanian
,
M.
, and
Williams
,
A.
,
2011
, “
LES Modelling of Air and Oxy-Fuel Pulverised Coal Combustion-Impact on Flame Properties
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2709
2716
. 10.1016/j.proci.2010.07.063
14.
Warzecha
,
P.
, and
Boguslawski
,
A.
,
2014
, “
LES and RANS Modelling of Pulverized Coal Combustion in Swirl Burner for Air and Oxy-Combustion Technologies
,”
Energy
,
66
, pp.
732
743
. 10.1016/j.energy.2013.12.015
15.
Halama
,
S.
, and
Spliethoff
,
H.
,
2016
, “
Reaction Kinetics of Pressurized Entrained Flow Coal Gasification: Computational Fluid Dynamics Simulation of a 5MW Siemens Test Gasifier
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
042204
. 10.1115/1.4032620
16.
Rakhshi
,
A.
, and
Wiltowski
,
T.
,
2018
, “
A Kinetic Assessment of Entrained Flow Gasification Modeling
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092204
. 10.1115/1.4040061
17.
Chen
,
L.
, and
Ghoniem
,
A. F.
,
2012
, “
Simulation of Oxy-Coal Combustion in a 100 KWth Test Facility Using RANS and LES: A Validation Study
,”
Energy Fuels
,
26
(
8
), pp.
4783
4798
. 10.1021/ef3006993
18.
Bi
,
D.
,
Guan
,
Q.
,
Xuan
,
W.
, and
Zhang
,
J.
,
2015
, “
Numerical Simulation of GSP Gasifier Under Different Swirl Angles
,”
Fuel
,
155
, pp.
155
163
. 10.1016/j.fuel.2015.04.001
19.
Xu
,
J.
,
Liang
,
Q.
,
Dai
,
Z.
, and
Liu
,
H.
,
2018
, “
The Influence of Swirling Flows on Pulverized Coal Gasifiers Using the Comprehensive Gasification Model
,”
Fuel Process. Technol.
,
172
, pp.
142
154
. 10.1016/j.fuproc.2017.12.012
20.
Yilmaz
,
I.
,
2013
, “
Effect of Swirl Number on Combustion Characteristics in a Natural Gas Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042204
. 10.1115/1.4024222
21.
Elorf
,
A.
,
Sarh
,
B.
,
Tabet
,
F.
,
Bostyn
,
S.
,
Asbik
,
M.
,
Bonnamy
,
S.
,
Choufi
,
J.
,
Boushaki
,
T.
, and
Gillon
,
P.
,
2018
, “
Effect of Swirl Strength on the Flow and Combustion Characteristics of Pulverized Biomass Flames
,”
Combust. Sci. Technol.
,
191
(
4
), pp.
629
644
. 10.1080/00102202.2018.1497611
22.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows, Abacus Press
,
Tunbridge Wells
,
UK
.
23.
Beer
,
J. M.
, and
Chigier
,
N. A.
,
1983
,
Combustion Aerodynamics
,
Krieger
,
Malabar, FL
.
24.
Silaen
,
A.
, and
Wang
,
T.
,
2010
, “
Effect of Turbulence and Devolatilization Models on Coal Gasification Simulation in an Entrained-Flow Gasifier
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2074
2091
. 10.1016/j.ijheatmasstransfer.2009.12.047
25.
Kumar
,
M.
, and
Ghoniem
,
A. F.
,
2012
, “
Multiphysics Simulations of Entrained Flow Gasification. Part II: Constructing and Validating the Overall Model
,”
Energy Fuels
,
26
(
1
), pp.
464
479
. 10.1021/ef2008858
26.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
,
CA
.
27.
ANSYS
,
2009
, “
Ansys® Ansys Fluent Theory Guide, Release 12.0, Help System, Turbulence Modeling
,” Ansys. Inc., https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node42.htm
28.
Abani
,
N.
, and
Ghoniem
,
A. F.
,
2013
, “
Large Eddy Simulations of Coal Gasification in an Entrained Flow Gasifier
,”
Fuel
,
104
, pp.
664
680
. 10.1016/j.fuel.2012.06.006
29.
Crowe
,
C. T.
,
Sharma
,
M. P.
, and
Stock
,
D. E.
,
1977
, “
The Particle-Source-ln Cell (PSI-CELL) Model for Gas-Droplet Flows
,”
J. Fluid. Eng.
,
99
(
2
), pp.
325
332
. 10.1115/1.3448756
30.
Ragland
,
K. W.
, and
Bryden
,
K. M.
,
2011
,
Combustion Engineering
, 2nd ed.,
CRC Press, Taylor & Francis Group
,
Boca Raton
.
31.
Ranade
,
V.
, and
Gupta
,
D.
,
2015
,
Computational Modelling of Pulverized Coal Fired Boilers
, 1st ed.,
Taylor & Francis Group
,
Boca Raton
.
32.
Grant
,
D. M.
,
Pugmire
,
R. J.
,
Fletcher
,
T. H.
, and
Kerstein
,
A. R.
,
1989
, “
Chemical Model of Coal Devolatilization Using Percolation Lattice Statistics
,”
Energy Fuels
,
3
(
2
), pp.
175
186
. 10.1021/ef00014a011
33.
Solomon
,
P. R.
,
Serio
,
M. A.
,
Carangelo
,
R. M.
, and
Markham
,
J. R.
,
1986
, “
Very Rapid Coal Pyrolysis
,”
Fuel
,
65
(
2
), pp.
182
194
. 10.1016/0016-2361(86)90005-0
34.
Tognotti
,
L.
,
Longwell
,
J. P.
, and
Sarofim
,
A. F.
,
1991
, “
The Products of the High Temperature Oxidation of a Single Char Particle in an Electrodynamic Balance
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
1207
1213
. 10.1016/S0082-0784(06)80382-6
35.
Hecht
,
E. S.
,
Shaddix
,
C. R.
,
Molina
,
A.
, and
Haynes
,
B. S.
,
2011
, “
Effect of CO2 Gasification Reaction on Oxy-Combustion of Pulverized Coal Char
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
1699
1706
. 10.1016/j.proci.2010.07.087
36.
Baum
,
M.
, and
Street
,
P.
,
1971
, “
Predicting the Combustion Behaviour of Coal Particles
,”
Combust. Sci. Technol.
,
3
(
5
), pp.
231
243
. 10.1080/00102207108952290
37.
Field
,
M. A.
,
1969
, “
Rate of Combustion of Size-Graded Fractions of Char From a Low-Rank Coal Between 1200 K and 2000K
,”
Combust. Flame
,
13
(
3
), pp.
237
252
. 10.1016/0010-2180(69)90002-9
38.
Brown
,
B. W.
,
Smoot
,
L. D.
,
Smith
,
P. J.
, and
Hedman
,
P. O.
,
1988
, “
Measurement and Prediction of Entrained-Flow Gasification Processes
,”
AIChE J.
,
34
(
3
), pp.
435
446
. 10.1002/aic.690340311
39.
Jones
,
W. P.
, and
Lindstedt
,
R. P.
,
1988
, “
Global Reaction Schemes for Hydrocarbon Combustion
,”
Combust. Flame
,
73
(
3
), pp.
233
249
. 10.1016/0010-2180(88)90021-1
40.
Zarmehri
,
A.
,
2012
, “
γ-Reθ Transitional Turbulence Model Tutorial, CFD with Open Source Software, Chalmers University of Technology
," https://docplayer.net/42024086-G-re-th-transitionalturbulence-model-tutorial.html.
41.
ANSYS
,
2009
, “
Ansys® Ansys Fluent User’s Guide, Release 12.0, Help System, Cell Zone and Boundary Conditions
,” Ansys Inc., https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node216.htm.
42.
Liu
,
R.
, and
An
,
E.
,
2017
, “
Turbulent Flame Characteristics of Oxycoal MILD Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062206
. 10.1115/1.4037190
43.
Syred
,
N.
, and
Beer
,
J. M.
,
1974
, “
Combustion in Swirling Flow: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
. 10.1016/0010-2180(74)90057-1
You do not currently have access to this content.