Abstract

To comply with future emission regulations for internal combustion engines, system-related cold start conditions in short-distance traffic constitute a particular challenge. Under these conditions, pollutant emissions are seriously increased due to internal engine effects and unfavorable operating conditions of the exhaust aftertreatment systems. As a secondary effect, the composition of the exhaust gases has a considerable influence on the deposition of aerosols via different deposition mechanisms and on fouling processes of exhaust gas-carrying components. Also, the performance of exhaust gas aftertreatment systems may be affected disadvantageously. In this study, the exhaust gas and deposit composition of a turbocharged three-cylinder gasoline engine are examined in situ upstream of the catalytic converter at ambient and engine starting temperatures of −22 °C to 23 °C using a Fourier-transform infrared spectrometer and a particle spectrometer. For the cold start investigation, a modern gasoline engine with series engine periphery is used. In particular, the investigation of the behavior of deposits in the exhaust system of gasoline engines during cold start under dynamic driving conditions represents an extraordinary challenge due to an average lower soot concentration in the exhaust gas compared to diesel engines and so far has not been examined in this form. A novel sampling method allows ex situ analysis of formed deposits during a single driving cycle. Both, particle number concentration and the deposition rate are higher in the testing procedure of real driving emissions (RDEs) than in the inner city part of the worldwide harmonized light vehicles test cycle (WLTC). In addition, reduced ambient temperatures increase the amount of deposits, which consist predominantly of soot and to a minor fraction of volatile compounds. Although the primary particle size distributions of the deposited soot particles do not change when boundary conditions change, the degree of graphitization within the particles increases with the increasing exhaust gas temperature.

References

1.
Grandgeorge
,
S.
,
Jallut
,
C.
, and
Thonon
,
B.
,
1998
, “
Particulate Fouling of Corrugated Plate Heat Exchangers. Global Kinetic and Equilibrium Studies
,”
Chem. Eng. Sci.
,
53
(
17
), pp.
3051
3071
. 10.1016/S0009- 2509(98)00128-6
2.
Boulter
,
P. G.
,
1997
, “
Environmental Traffic Management: A Review of Factors Affecting Cold Start Emissions
,”
England, Transport Research Laboratory TRL Report 270
.
3.
European Commission
,
2018
, “
Commission Regulation (EU) for the Purpose of Improving the Emission Type Approval Tests and Procedures for Light Passenger and Commercial Vehicles, Including Those for in-Service Conformity and Real-Driving Emissions and Introducing Devices for Monitoring the Consumption of Fuel and Electric Energy
,”
Off. J. Eur. Union
,
61
, pp.
145
537
.
CELEX32018R1832
.
4.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
,
2001
,
Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
, Vol.
3
,
Springer-Verlag, Heidelberg/New York
.
5.
Williams
,
A.
, and
Smith
,
D. B.
,
1969
,
The Combustion and Oxidation of Acetylene
,
Department of Fuel Science, University of Leeds
,
UK
, pp.
267
293
.
6.
Bockhorn
,
H.
,
1994
,
Soot Formation in Combustion: Mechanisms and Models
,
Springer-Verlag
,
Berlin
.
7.
Sluder
,
S. C.
,
Storey
,
J. M. E.
,
Lewis
,
S. A.
,
Styles
,
D.
,
Giuliano
,
J.
, and
Hoard
,
J. W.
,
2009
, “
Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst
,”
SAE Int. J. Eng.
,
1
(
1
), pp.
1196
1204
. 10.4271/2008- 01-2467
8.
Teng
,
H.
, and
Regner
,
G.
,
2010
, “
Particulate Fouling in EGR Coolers
,”
SAE Int. J. Commer. Vehicles
,
2
(
2
), pp.
154
163
. 10.4271/2009- 01-2877
9.
Abraham
,
M.
,
Hoard
,
J.
,
Assanis
,
D. N.
,
Styles
,
D.
,
Curtis
,
E. W.
,
Ramesh
,
N.
,
Sluder
,
C. S.
, and
Storey
,
J. M. E.
,
2009
, “
Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers
,”
SAE Int. J. Fuels Lubr.
,
2
(
1
), pp.
921
931
. 10.4271/2009- 01-1939
10.
Malayeri
,
M. R.
,
Zornek
,
T.
,
Balestrino
,
S.
,
Warey
,
A.
, and
Szymkowicz
,
P. G.
,
2011
, “
Deposition of Nano-Sized Soot Particles in Various EGR Coolers Under Thermophoretic and Iso-Thermal Conditions
,”
Proceedings of International Conference on Heat Exchanger Fouling and Cleaning
,
Crete, Greece
,
June 5–10, 2011
.
11.
Abraham
,
M.
,
Hoard
,
J.
,
Assanis
,
D. N.
,
Styles
,
D.
,
Curtis
,
E. W.
, and
Ramesh
,
N.
,
2010
, “
Review of Soot Deposition and Removal Mechanisms in EGR Coolers
,”
SAE Int. J. Fuels Lubr.
,
3
(
1
), pp.
690
704
. 10.4271/2010- 01-1211
12.
Abd-Elhady
,
M. S.
,
Zornek
,
T.
,
Malayeri
,
R.
,
Balestrino
,
S.
,
Szymkowicz
,
P.
, and
Müller-Steinhagen
,
H. M.
,
2011
, “
Influence of Gas Velocity on Particulate Fouling of Exhaust Gas Recirculation Coolers
,”
Int. J. Heat Mass Transfer
,
54
(
4
), pp.
838
846
. 10.1016/.2010.10.019
13.
Hong
,
K. S.
,
Lee
,
K. S.
,
Song
,
S.
,
Chun
,
K. M.
,
Chung
,
D.
, and
Min
,
S.
,
2011
, “
Parametric Study on Particle Size and SOF Effects on EGR Cooler Fouling
,”
Atmos. Environ.
,
45
(
32
), pp.
5677
5683
. 10.1016/. 2011.07.036
14.
Warey
,
A.
,
Balestrino
,
S.
,
Szymkowicz
,
P.
, and
Malayeri
,
R.
,
2012
, “
A One-Dimensional Model for Particulate Deposition and Hydrocarbon Condensation in Exhaust Gas Recirculation Coolers
,”
Aerosol Sci. Technol.
,
46
(
2
), pp.
198
213
. 10.1080/02786826.2011.617400
15.
Bika
,
A. S.
,
Warey
,
A.
,
Long
,
D.
,
Balestrino
,
S.
, and
Szymkowicz
,
P.
,
2012
, “
Characterization of Soot Deposition and Particle Nucleation in Exhaust Gas Recirculation Coolers
,”
Aerosol Sci. Technol.
,
46
(
12
), pp.
1328
1336
. 10.1080/02786826.2012.712730
16.
Salvi
,
A.
,
Hoard
,
J.
,
Styles
,
D.
, and
Assanis
,
D.
,
2016
, “
In Situ Thermophysical Properties of an Evolving Carbon Nanoparticle Based Deposit Layer Utilizing a Novel Infrared and Optical Methodology
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052207
. 10.1115/1.4032942
17.
He
,
C.
, and
Ahmadi
,
G.
,
1998
, “
Particle Deposition With Thermophoresis in Laminar and Turbulent Duct Flows
,”
Aerosol Sci. Technol.
,
29
(
6
), pp.
525
546
. 10.1080/02786829808965588
18.
Abarham
,
M.
,
Chafekar
,
T.
,
Hoard
,
J.
,
Styles
,
D.
, and
Assanis
,
D. N.
,
2012
, “
A Visualization Test Setup for Investigation of Water-Deposit Interaction in a Surrogate Rectangular Cooler Exposed to Diesel Exhaust Flow
,”
SAE Technical Paper 2012-01-0364
. 10.4271/2012- 01-0364
19.
Garrido Gonzalez
,
N.
,
Baar
,
R.
,
Drueckhammer
,
J.
, and
Kaeppner
,
C.
,
2017
, “
The Thermodynamics of Exhaust Gas Condensation
,”
SAE Int. J. Eng.
,
10
(
4
), pp.
1411
1421
. 10.4271/2017- 01-9281
20.
Hagen
,
F. P.
,
Rinkenburger
,
A.
,
Günther
,
J.
,
Bockhorn
,
H.
,
Niessner
,
R.
,
Suntz
,
R.
,
Loukou
,
A.
,
Trimis
,
D.
, and
Haisch
,
C.
,
2020
, “
Spark Discharge-Generated Soot: Varying Nanostructure and Reactivity Against Oxidation With Molecular Oxygen by Synthesis Conditions
,”
J. Aerosol Sci.
,
143
, p.
105530
. 10.1016/j.jaerosci.2020.105530
21.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
. 10.1038/nmeth.2089
22.
Yehliu
,
K.
,
Vander Wal
,
R. L.
, and
Boehman
,
A. L.
,
2011
, “
Development of an HRTEM Image Analysis Method to Quantify Carbon Nanostructure
,”
Combust. Flame
,
158
(
9
), pp.
1837
1851
. 10.1016/j.combustflame.2011.01.009
23.
Zhang
,
T.
, and
Suen
,
C. Y.
,
1984
, “
A Fast Parallel Algorithm for Thinning Digital Patterns
,”
Commun. ACM
,
27
(
3
), pp.
236
239
. 10.1145/357994.358023
24.
Koch
,
S.
,
Kubach
,
H.
,
Velji
,
A.
,
Koch
,
T.
,
Hagen
,
F. P.
,
Bockhorn
,
H.
,
Loukou
,
A.
,
Trimis
,
D.
, and
Suntz
,
R.
,
2020
, “
Impact of the Injection Strategy on Soot Reactivity and Particle Properties of a GDI Engine
,”
SAE Technical Paper
. 10.4271/2020- 01-0392
You do not currently have access to this content.