Abstract

Excessive water production is a common matter that seriously affects production efficiency during the development of edge-water fault-block reservoirs. Gas huff-n-puff is an effective water shutoff technology that has the characteristics of small injection volume, no interwell connectivity impact, and minor gas channeling. However, gas injection can destroy the stability of the asphaltene to induce asphaltene deposition. In this article, the laboratory experiment had been conducted to investigate the effect of injection ratio and injection sequence on oil increment and water cut control for gas mixture huff-n-puff. Experimental results indicated that the effect of N2 huff-n-puff on water cut control was the most obvious, while CO2 huff-n-puff had the best performance on oil increment. Oil increment and water cut control of gas mixture huff-n-puff with CO2 injected in advance were obviously better than that of N2 injection preferentially. Subsequently, PVTsim Nova was utilized to investigate whether reducing CO2 injection volume can inhibit asphaltene deposition and predict the possibility of asphaltene deposition at reservoir conditions. Simulation results demonstrated that the asphaltenes were easily deposited with CO2 injection while N2 injection will be unlikely to induce asphaltene deposition. Asphaltene deposition pressure envelope can qualitatively analyze the possibility of asphaltene deposition and provide a reference for screening the appropriate gas injection ratio based on giving full play to the synergistic effect of CO2 and N2. In this study, 7:3 is selected as the optimum injection ratio considering the synergistic effect and the possibility of asphaltene deposition.

References

1.
Dai
,
S.
,
Zhang
,
C.
,
Yin
,
T.
,
Gong
,
F.
, and
Zou
,
S.
,
2008
, “
Development Techniques for Deep Complex Fault Block Reservoirs with Low Permeability in Zhongyuan Oilfield
,”
Pet. Explor. Dev.
,
35
(
4
), pp.
462
466
. 10.1016/S1876-3804(08)60095-6
2.
Tan
,
X.
,
Liu
,
Y.
,
Zhou
,
X.
,
Liu
,
J.
,
Zheng
,
R.
, and
Jia
,
C.
,
2019
, “
Multi-parameter Quantitative Assessment of 3D Geological Models for Complex Fault-Block Oil Reservoirs
,”
Pet. Explor. Dev.
,
46
(
1
), pp.
194
204
. 10.1016/S1876-3804(19)30019-9
3.
Wu
,
Y.
,
Weng
,
X.
,
Xu
,
M.
, and
Guo
,
S.
,
2012
, “
Study of Early Dynamic Evaluation Methods in Complex Small Fault-Block Reservoirs
,”
Energy Procedia
,
14
, pp.
689
694
. 10.1016/j.egypro.2011.12.996
4.
Zhao
,
F.
,
Wang
,
P.
,
Huang
,
S.
,
Hao
,
H.
,
Zhang
,
M.
, and
Lu
,
G.
,
2020
, “
Performance and Applicable Limits of Multi-Stage Gas Channeling Control System for CO2 Flooding in Ultra-Low Permeability Reservoirs
,”
J. Pet. Sci. Eng.
,
192
, p.
107336
. 10.1016/j.petrol.2020.107336
5.
Afzali
,
S.
,
Rezaei
,
N.
, and
Zendehboudi
,
S.
,
2018
, “
A Comprehensive Review on Enhanced Oil Recovery by Water Alternating Gas (WAG) Injection
,”
Fuel
,
227
, pp.
218
246
. 10.1016/j.fuel.2018.04.015
6.
Zhao
,
F.
,
Hao
,
H.
,
Lv
,
G.
,
Wang
,
Z.
,
Hou
,
J.
,
Wang
,
P.
,
Zhang
,
M.
,
Lu
,
G.
,
Fu
,
Z.
, and
Li
,
W.
,
2018
, “
Performance Improvement of CO2 Flooding Using Production Controls in 3D Areal Heterogeneous Models: Experimental and Numerical Simulations
,”
J. Pet. Sci. Eng.
,
164
, pp.
12
23
. 10.1016/j.petrol.2018.01.036
7.
Hoffman
,
B. T.
, and
Shoaib
,
S.
,
2014
, “
CO2 Flooding to Increase Recovery for Unconventional Liquids-Rich Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022801
. 10.1115/1.4025843
8.
Zhou
,
D.
, and
Yang
,
D.
,
2017
, “
Scaling Criteria for Waterflooding and Immiscible CO2 Flooding in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022909
. 10.1115/1.4035513
9.
Li
,
S.
,
Li
,
B.
,
Zhang
,
Q.
,
Li
,
Z.
, and
Yang
,
D.
,
2018
, “
Effect of CO2 on Heavy Oil Recovery and Physical Properties in Huff-n-Puff Processes Under Reservoir Conditions
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072907
. 10.1115/1.4039325
10.
Srivastava
,
R. K.
,
Huang
,
S. S.
, and
Dong
,
M.
,
1999
, “
Asphaltene Deposition During CO2 Flooding
,”
SPE Prod. Facil.
,
14
(
4
), pp.
235
245
. 10.2118/59092-PA
11.
Wang
,
P.
,
Zhao
,
F.
,
Hou
,
J.
,
Lu
,
G.
,
Zhang
,
M.
, and
Wang
,
Z.
,
2018
, “
Comparative Analysis of CO2, N2, and Gas Mixture Injection on Asphaltene Deposition Pressure in Reservoir Conditions
,”
Energies
,
11
(
9
), p.
2483
. 10.3390/en11092483
12.
Farajzadeh
,
R.
,
Eftekhari
,
A. A.
,
Dafnomilis
,
G.
,
Lake
,
L. W.
, and
Bruining
,
J.
,
2020
, “
On the Sustainability of CO2 Storage Through CO2-Enhanced Oil Recovery
,”
Appl. Energy
,
261
, p.
114467
. 10.1016/j.apenergy.2019.114467
13.
Al-Bayati
,
D.
,
Saeedi
,
A.
,
Myers
,
M.
,
White
,
C.
,
Xie
,
Q.
, and
Clennell
,
B.
,
2018
, “
Insight Investigation of Miscible scCO2 Water Alternating Gas (WAG) Injection Performance in Heterogeneous Sandstone Reservoirs
,”
J. CO2 Util.
,
28
, pp.
255
263
. 10.1016/j.jcou.2018.10.010
14.
Jiang
,
J.
,
Rui
,
Z.
,
Hazlett
,
R.
, and
Lu
,
J.
,
2019
, “
An Integrated Technical-Economic Model for Evaluating CO2 Enhanced Oil Recovery Development
,”
Appl. Energy
,
247
, pp.
190
211
. 10.1016/j.apenergy.2019.04.025
15.
Zuo
,
L.
, and
Bensona
,
S. M.
,
2013
, “
Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration
,”
Energy Procedia
,
37
, pp.
6957
6963
. 10.1016/j.egypro.2013.06.629
16.
Zuo
,
L.
,
Ajo-Franklinb
,
J. B.
,
Voltolinib
,
M.
,
Geller
,
J. T.
, and
Benson
,
S. M.
,
2017
, “
Pore-Scale Multiphase Flow Modeling and Imaging of CO2 Exsolution in Sandstone
,”
J. Pet. Sci. Eng.
,
155
, pp.
63
77
. 10.1016/j.petrol.2016.10.011
17.
Shen
,
Z.
, and
Sheng
,
J. J.
,
2018
, “
Experimental and Numerical Study of Permeability Reduction Caused by Asphaltene Precipitation and Deposition During CO2 Huff-n-Puff Injection in Eagle Ford Shale
,”
Fuel
,
211
, pp.
432
445
. 10.1016/j.fuel.2017.09.047
18.
Tang
,
Y.
,
Hou
,
J.
, and
Li
,
C.
,
2013
, “
Water Shut Off in a Horizontal Well: Lab Experiments with Starch Graft Copolymer Agent
,”
J. Pet. Sci. Eng.
,
108
, pp.
230
238
. 10.1016/j.petrol.2013.04.007
19.
Zhang
,
L.
,
Pu
,
C.
,
Cui
,
S.
,
Nasir
,
K.
, and
Liu
,
Y.
,
2017
, “
Experimental Study on a New Type of Water Shutoff Agent Used in Fractured Low Permeability Reservoir
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012907
. 10.1115/1.4035146
20.
Sun
,
X.
, and
Bai
,
B.
,
2017
, “
Comprehensive Review of Water Shutoff Methods for Horizontal Wells
,”
Pet. Explor. Dev.
,
44
(
6
), pp.
1022
1029
. 10.1016/S1876-3804(17)30115-5
21.
Liu
,
S.
,
Zhang
,
L.
,
Zhang
,
K.
,
Zhou
,
J.
,
He
,
H.
, and
Hou
,
Z.
,
2019
, “
A Simplified and Efficient Method for Water Flooding Production Index Calculations in Low Permeable Fractured Reservoir
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112905
. 10.1115/1.4043788
22.
Alfarge
,
D. K.
,
Wei
,
M.
, and
Bai
,
B.
,
2017
, “
Numerical Simulation Study of Factors Affecting Relative Permeability Modification for Water-Shutoff Treatments
,”
Fuel
,
207
, pp.
226
239
. 10.1016/j.fuel.2017.06.041
23.
Danesh
,
A.
,
Peden
,
J. M.
,
Krinis
,
D.
, and
Henderson
,
G. D.
,
1987
, “
Pore Level Visual Investigation of Oil Recovery by Solution Gas Drive and Gas Injection
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, Texas, USA
,
September 27-30
.
24.
Carlsen
,
M. L.
,
Whitson
,
C. H.
,
Dahouk
,
M. M.
,
Younus
,
B.
,
Yusra
,
I.
,
Kerr
,
E.
,
Nohavitza
,
J.
,
Thuesen
,
M.
,
Drozd
,
J. H.
,
Ambrose
,
R.
, and
Mydland
,
S.
,
2019
, “
Compositional Tracking of a Huff-n-Puff Project in the Eagle Ford
,”
SPE Unconventional Resources Technology Conference
,
Denver, Colorado, USA
,
July 22-24
.
25.
Shi
,
Y.
, and
Yang
,
D.
,
2017
, “
Quantification of a Single Gas Bubble Growth in Solvent(s)–CO2–Heavy Oil Systems with Consideration of Multicomponent Diffusion Under Nonequilibrium Conditions
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022908
. 10.1115/1.4035150
26.
Arora
,
P.
, and
Kovscek
,
A. R.
,
2003
, “
A Mechanistic Modeling and Experimental Study of Solution Gas Drive
,”
Transp. Porous Media
,
51
(
3
), pp.
237
265
. 10.1023/A:1022353925107
27.
Mohamed
,
I. M.
,
He
,
J.
, and
Nasr-El-Din
,
H. A.
,
2013
, “
Experimental Analysis of CO2 Injection on Permeability of Vuggy Carbonate Aquifers
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013301
. 10.1115/1.4007799
28.
Song
,
C.
, and
Yang
,
D.
,
2017
, “
Experimental and Numerical Evaluation of CO2 Huff-n-Puff Processes in Bakken Formation
,”
Fuel
,
190
, pp.
145
162
. 10.1016/j.fuel.2016.11.041
29.
Nguyena
,
P.
,
Careya
,
J. W.
,
Viswanathana
,
H. S.
, and
Porter
,
M.
,
2018
, “
Effectiveness of Supercritical-CO2 and N2 Huff-and-Puff Methods of Enhanced Oil Recovery in Shale Fracture Networks Using Microfluidic Experiments
,”
Appl. Energy
,
230
, pp.
160
174
. 10.1016/j.apenergy.2018.08.098
30.
Zuloaga
,
P.
,
Yu
,
W.
, and
Miao
,
J.
,
2017
, “
Performance Evaluation of CO2 Huff-n-Puff and Continuous CO2 Injection in Tight Oil Reservoirs
,”
Energy
,
134
, pp.
181
192
. 10.1016/j.energy.2017.06.028
31.
Li
,
L.
,
Sheng
,
J. J.
, and
Sheng
,
J.
,
2016
, “
Optimization of Huff-n-Puff Gas Injection to Enhance Oil Recovery in Shale Reservoirs
,”
SPE Low Perm Symposium
,
Denver, Colorado, USA
,
May 5–6
.
32.
Kanfar
,
M. S.
, and
Clarkson
,
C. R.
,
2017
, “
Factors Affecting Huff-n-Puff Efficiency in Hydraulically-Fractured Tight Reservoirs
,”
SPE Unconventional Resources Conference
,
Calgary, Alberta, Canada
,
February 15–16
.
33.
He
,
Y.
,
Cheng
,
S.
,
Sun
,
Z.
,
Chai
,
Z.
, and
Rui
,
Z.
, “
Improving Oil Recovery Through Fracture Injection and Production of Multiple Fractured Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053002
. 10.1115/1.4045957
34.
Shayegi
,
S.
,
Jin
,
Z.
,
Schenewerkr
,
P.
, and
Wolcott
,
J.
,
1996
, “
Improved Cyclic Stimulation Using Gas Mixtures
,”
SPE Annual Technical Conference and Exhibition
,
Denver, Colorado, USA
,
October 6–9
.
35.
George
,
D. S.
,
Hayat
,
O.
, and
Kovscek
,
A. R.
,
2005
, “
A Microvisual Study of Solution-Gas-Drive Mechanisms in Viscous Oils
,”
J. Pet. Sci. Eng.
,
46
(
1–2
), pp.
101
119
. 10.1016/j.petrol.2004.08.003
36.
Habibi
,
A.
,
Yassin
,
M. R.
,
Dehghanpour
,
H.
, and
Bryan
,
D.
,
2017
, “
Experimental Investigation of CO2-Oil Interactions in Tight Rocks: A Montney Case Study
,”
Fuel
,
203
, pp.
853
867
. 10.1016/j.fuel.2017.04.077
37.
Oskouei
,
S. J. P.
,
Zadeh
,
A. B.
, and
Gates
,
I. D.
,
2017
, “
A New Kinetic Model for Non-Equilibrium Dissolved Gas Ex-Solution From Static Heavy Oil
,”
Fuel
,
204
, pp.
12
22
. 10.1016/j.fuel.2017.05.018
38.
Sharma
,
S.
, and
Sheng
,
J. J.
,
2017
, “
A Comparative Study of Huff-n-Puff Gas and Solvent Injection in a Shale Gas Condensate Core
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
549
565
. 10.1016/j.jngse.2017.01.012
39.
Sharma
,
S.
, and
Sheng
,
J. J.
,
2018
, “
Comparison of Huff-n-Puff Gas Injection and Solvent Injection in Large-Scale Shale Gas Condensate Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
52
, pp.
434
453
. 10.1016/j.jngse.2017.10.007
40.
Zuo
,
L.
,
Zhang
,
C.
,
Falta
,
R. W.
, and
Benson
,
S. M.
,
2013
, “
Micromodel Investigations of CO2 Exsolution From Carbonated Water in Sedimentary Rocks
,”
Adv. Water Resour.
,
53
, pp.
188
197
. 10.1016/j.advwatres.2012.11.004
41.
Fakher
,
S.
, and
Imqam
,
A.
,
2019
, “
Asphaltene Precipitation and Deposition During CO2 Injection in Nano Shale Pore Structure and Its Impact on Oil Recovery
,”
Fuel
,
237
, pp.
1029
1039
. 10.1016/j.fuel.2018.10.039
You do not currently have access to this content.