Abstract

Solar-powered organic Rankine cycle (ORC) is considered a promising technology and has the potential to provide clean electric energy. Extensive studies on the design of ORC systems have been conducted and reported in the literature. However, few studies have presented the influence of climate zones on the performance of a solar-powered ORC, especially for an integrated ORC and energy storage system. This paper presents an analysis to determine the performance of solar-powered ORCs with electric energy storage (EES) systems to supply electricity to buildings in different climate zones in the United States. The building type evaluated in this paper is a large office, and the energy consumption of the facility in each climate location was determined using EnergyPlus. The ORC-EES operational strategy used in this investigation is described as follows: when solar irradiation is adequate to produce power, the ORC charges the EES. Then, when there is no solar energy available, the EES provides power to the building. The ORC-EES is evaluated based on the potential to reduce the operational cost, the primary energy consumption, and the carbon dioxide emission. Furthermore, the influence of the number of solar collectors and the EES size on the performance of the ORC-EES system is investigated.

References

1.
Vidhi
,
R.
,
Kuravi
,
S.
,
Yogi Goswami
,
D.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042002
. 10.1115/1.4023513
2.
Zhai
,
H.
,
Shi
,
L.
, and
An
,
Q.
,
2014
, “
Influence of Working Fluid Properties on System Performance and Screen Evaluation Indicators for Geothermal ORC (Organic Rankine Cycle) System
,”
Energy
,
74
, pp.
2
11
. 10.1016/j.energy.2013.12.030
3.
Zhang
,
J.
,
Zhang
,
H.
,
Yang
,
K.
,
Yang
,
F.
,
Wang
,
Z.
,
Zhao
,
G.
,
Liu
,
H.
,
Wang
,
E.
, and
Yao
,
B.
,
2014
, “
Performance Analysis of Regenerative Organic Rankine Cycle (RORC) Using the Pure Working Fluid and the Zeotropic Mixture Over the Whole Operating Range of a Diesel Engine
,”
Energy Convers. Manag.
,
84
, pp.
282
294
. 10.1016/j.enconman.2014.04.036
4.
Yang
,
F.
,
Cho
,
H.
,
Zhang
,
H.
, and
Zhang
,
J.
,
2017
, “
Thermoeconomic Multi-objective Optimization of a Dual Loop Organic Rankine Cycle (ORC) for CNG Engine Waste Heat Recovery
,”
Appl. Energy
,
205
, pp.
1100
1118
. 10.1016/j.apenergy.2017.08.127
5.
Yang
,
F.
,
Cho
,
H.
,
Zhang
,
H.
,
Zhang
,
J.
, and
Wu
,
Y.
,
2018
, “
Artificial Neural Network (ANN) Based Prediction and Optimization of an Organic Rankine Cycle (ORC) for Diesel Engine Waste Heat Recovery
,”
Energy Convers. Manag.
,
164
, pp.
15
26
. 10.1016/j.enconman.2018.02.062
6.
Costa
,
S.-C.
,
Mahkamov
,
K.
,
Kenisarin
,
M.
,
Ismail
,
M.
,
Lynn
,
K.
,
Halimic
,
E.
, and
Mullen
,
D.
,
2020
, “
Solar Salt Latent Heat Thermal Storage for a Small Solar Organic Rankine Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031203
. 10.1115/es2018-7326
7.
Delgado-Torres
,
A. M.
, and
García-Rodríguez
,
L.
,
2010
, “
Analysis and Optimization of the Low-Temperature Solar Organic Rankine Cycle (ORC)
,”
Energy Convers. Manag.
,
51
(
12
), pp.
2846
2856
. 10.1016/j.enconman.2010.06.022
8.
Loni
,
R.
,
Askari Asli-Ardeh
,
E.
,
Ghobadian
,
B.
,
Najafi
,
G.
, and
Bellos
,
E.
,
2019
, “
Effects of Size and Volume Fraction of Alumina Nanoparticles on the Performance of a Solar Organic Rankine Cycle
,”
Energy Convers. Manag.
,
182
(
January
), pp.
398
411
. 10.1016/j.enconman.2018.12.079
9.
Mago
,
P. J.
,
Hueffed
,
A.
, and
Chamra
,
L. M.
,
2010
, “
Analysis and Optimization of the Use of CHP-ORC Systems for Small Commercial Buildings
,”
Energy Build.
,
42
(
9
), pp.
1491
1498
. 10.1016/j.enbuild.2010.03.019
10.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2009
, “
Process Integration of Organic Rankine Cycle
,”
Energy
,
34
(
10
), pp.
1674
1686
. 10.1016/j.energy.2009.04.037
11.
Sarkar
,
J.
,
2018
, “
A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052004
. 10.1115/1.4038963
12.
Tareq Chowdhury
,
M.
, and
Mokheimer
,
E. M. A.
,
2020
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
. 10.1115/1.4044562
13.
Antonelli
,
M.
,
Baccioli
,
A.
,
Francesconi
,
M.
,
Psaroudakis
,
P.
, and
Martorano
,
L.
,
2015
, “
Small Scale ORC Plant Modeling With the AMESim Simulation Tool: Analysis of Working Fluid and Thermodynamic Cycle Parameters Influence
,”
Energy Procedia
,
81
(
January 2016
), pp.
440
449
. 10.1016/j.egypro.2015.12.118
14.
Spayde
,
E.
, and
Mago
,
P. J.
,
2015
, “
Evaluation of a Solar-Powered Organic Rankine Cycle Using Dry Organic Working Fluids
,”
Cogent Eng.
,
2
(
1
), p.
1085300
. 10.1080/23311916.2015.1085300
15.
Ustaoglu
,
A.
,
Okajima
,
J.
,
Zhang
,
X. R.
, and
Maruyama
,
S.
,
2019
, “
Assessment of a Solar Energy Powered Regenerative Organic Rankine Cycle Using Compound Parabolic Involute Concentrator
,”
Energy Convers. Manag.
,
184
(
January
), pp.
661
670
. 10.1016/j.enconman.2019.01.079
16.
Cioccolanti
,
L.
,
Tascioni
,
R.
,
Bocci
,
E.
, and
Villarini
,
M.
,
2018
, “
Parametric Analysis of a Solar Organic Rankine Cycle Trigeneration System for Residential Applications
,”
Energy Convers. Manag.
,
163
(
March
), pp.
407
419
. 10.1016/j.enconman.2018.02.043
17.
Spayde
,
E.
,
Mago
,
P. J.
, and
Luck
,
R.
,
2018
, “
Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle With Electric Energy Storage in Different Commercial Buildings
,”
Energies
,
11
(
2
), p.
276
. 10.3390/en11020276
18.
“EnergyPlus” [Online]
. Available: https://energyplus.net/
19.
“Solar Rating & Certification Corporation” [Online]
. Available: http://www.aetsolar.com/literature/SRCC_Certs/Collectors/AE/SRCC_AE-40.pdf
20.
Wilcox
,
S.
, and
Marion
,
W.
,
2008
,
Users Manual for TMY3 Data Sets
.
21.
Armstrong
,
P.
,
Carlisle
,
N.
,
Davis
,
W.
, and
Hunn
,
B. D.
, “
Engineering Principles and Concepts for Active Solar Systems
.
22.
John
,
A.
, and
Duffie
,
W. A. B.
,
2013
,
Wiley: Solar Engineering of Thermal Processes
, 4th ed.,
Hoboken, NJ
.
23.
Fumo
,
N.
, and
Chamra
,
L. M.
,
2010
, “
Analysis of Combined Cooling, Heating, and Power Systems Based on Source Primary Energy Consumption
,”
Appl. Energy
,
87
(
6
), pp.
2023
2030
. 10.1016/j.apenergy.2009.11.014
24.
Czachorski
,
M.
, and
Leslie
,
N.
,
2009
,
Source Energy and Emission Factors for Building Energy Consumption
.
25.
Deru
,
M.
,
2007
, “
Establishing Standard Source Energy and Emission Factors for Energy Use in Buildings
,”
Proc. Energy Sustain. Conf.
,
2007
(
June
), pp.
541
548
. 10.1115/es2007-36105
26.
“Power Profiler” [Online]
. Available: https://www.epa.gov/energy/power-profiler#/FRCC
27.
“U.S. Energy Information Administration” [Online]
. Available: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a
28.
“U.S. Department of Energy. Existing Commercial Reference Building Constructed in or After 1980.” [Online]
, https://www.energy.gov/eere/buildings/existing-commercial- refrence- buildings- constracted
29.
Solar Rating & Certification Corporation
,
2013
, “
OG-100 ICC-SRCC Certified Solar Collector # 10001820
.”
30.
Energy Star. Energy Star Portfolio Manager Technical Refrence Source Energy
” [Online], https://portfoliomanager.energystar.gov/pdf/refrence/Source Energy.pdf
31.
Warren
,
H.
,
Mago
,
P. J.
,
Knizley
,
A.
, and
Luck
,
R.
,
2017
, “
Performance Enhancement of a Power Generation Unit–Organic Rankine Cycle System Through the Addition of Electric Energy Storage
,”
J. Energy Storage
,
10
, pp.
28
38
. 10.1016/j.est.2017.01.001
You do not currently have access to this content.