Abstract

Primary alcohols such as methanol, ethanol, and butanol have exhibited excellent potential as possible alternative fuels for spark ignition (SI) engines because they are renewable, cleaner, and safer to store and transport. However, it is important to investigate the technical feasibility of adapting these primary alcohols in existing SI engines. In this research, a multi-point port fuel injection (MPFI) system equipped SI engine was used for assessing and comparing the combustion, performance, and emission characteristics of various alcohol-gasoline blends (gasohols) vis-à-vis baseline gasoline. The experiments were performed at different engine loads at rated engine speed. Experimental results exhibited relatively superior combustion characteristics of the engine fueled with gasohol than the baseline gasoline, especially at medium engine loads. Among different test fuels, the methanol-gasoline blend (GM10) exhibited relatively more stable combustion characteristics than the ethanol-gasoline blend (GE10) and butanol-gasoline blend (GB10). In this study, relatively superior engine performance of the gasohol-fueled engine was observed at all engine loads and speeds. GB10 exhibited the highest brake thermal efficiency (BTE), followed by GM10 amongst all test fuels. The effect of improved combustion was also reflected in the emission characteristics, which exhibited that GB10 emitted relatively lower carbon monoxide (CO) and hydrocarbons (HCs) than other test fuels. GB10 emitted relatively higher nitrogen oxides (NOx) than GM10 and GE10. Unregulated emission results exhibited that the engine fueled with gasohols emitted relatively lower sulfur dioxide (SO2), ammonia (NH3), and various other saturated and unsaturated HCs than the baseline gasoline. The GM10-fueled engine was relatively more effective in reducing unregulated emissions among all test fuels. This study concluded that methanol and butanol blending with gasoline resulted in superior engine performance and reduced harmful emissions in MPFI transport engines. This offered an excellent option to displace fossil fuels partially and reduce emissions simultaneously.

References

1.
José
,
G.
,
Johansson
,
T. B.
,
Reddy
,
A. K. N.
, and
Williams
,
R. H.
,
2011
, “
Energy for the New Millennium
,”
Ambio
,
30
(
6
), pp.
330
338
.
2.
Pardiwala
,
J. M.
,
Patel
,
F.
, and
Patel
,
S.
,
2011
, “
Review Paper on Catalytic Converter for Automotive Exhaust Emission
,”
International Conference On Current Trends in Technology, 'NUiCONE-2011'.
3.
Mukherjee
,
A.
,
Roy
,
K.
,
Bagchi
,
J.
, and
Mondal
,
K.
,
2016
, “
Catalytic Converter in Automobile Exhaust Emission
,”
J. Res.
,
2
(
10
), pp.
29
33
.
4.
Sequera
,
A. J.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2011
, “
Effects of Fuel Injection Timing in the Combustion of Biofuels in a Diesel Engine at Partial Loads
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022203
.
5.
Issayev
,
G.
,
Sarathy
,
S. M.
, and
Farooq
,
A.
,
2020
, “
Auto-Ignition of Diethyl Ether and a Diethyl Ether/Ethanol Blend
,”
Fuel
,
279
, p.
118553
.
6.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2015
, “
Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and Methanol-Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012201
.
7.
Pellegrini
,
L. A.
,
Soave
,
G.
,
Gamba
,
S.
, and
Langè
,
S.
,
2011
, “
Economic Analysis of a Combined Energy–Methanol Production Plant
,”
Appl. Energy
,
88
(
12
), pp.
4891
4897
.
8.
Li
,
H.
,
Hong
,
H.
,
Jin
,
H.
, and
Cai
,
R.
,
2010
, “
Analysis of a Feasible Polygeneration System for Power and Methanol Production Taking Natural Gas and Biomass as Materials
,”
Appl. Energy
,
87
(
9
), pp.
2846
2853
.
9.
Li
,
Y.
,
Bai
,
X.
,
Tuner
,
M.
,
Im
,
H. G.
, and
Johansson
,
B.
,
2019
, “
Investigation on a High-Stratified Direct Injection Spark Ignition (DISI) Engine Fueled With Methanol Under a High Compression Ratio
,”
Appl. Therm. Eng.
,
148
, pp.
352
362
.
10.
Zhen
,
X.
, and
Wang
,
Y.
,
2015
, “
An Overview of Methanol as an Internal Combustion Engine Fuel
,”
Renew. Sustain. Energy Rev.
,
52
, pp.
477
493
.
11.
Bielaczyc
,
P.
,
Woodburn
,
J.
,
Klimkiewicz
,
D.
,
Pajdowski
,
P.
, and
Szczotka
,
A.
,
2013
, “
An Examination of the Effect of Ethanol-Gasoline Blends’ Physicochemical Properties on Emissions From a Light-Duty Spark-Ignition Engine
,”
Fuel Process. Technol.
,
107
, pp.
50
63
.
12.
Wei
,
Y.
,
Wang
,
K.
,
Wang
,
W.
,
Liu
,
S.
, and
Yang
,
Y.
,
2014
, “
Contribution Ratio Study of Fuel Alcohol and Gasoline on the Alcohol and Hydrocarbon Emissions of a Gasohol Engine
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022201
.
13.
Bata
,
R. M.
,
Elrod
,
A. C.
, and
Lewandowskia
,
T. P.
,
1989
, “
Butanol as a Blending Agent with Gasoline for IC Engines
,” SAE Technical Paper 890434.
14.
Gautam
,
M.
, and
Martin
,
D. W.
,
2000
, “
Combustion Characteristics of Higher-Alcohol/Gasoline Blends
,”
Proc. Inst. Mech. Eng. Part A
,
214
(
5
), pp.
497
511
.
15.
Zhen
,
X.
,
Wang
,
Y.
, and
Liu
,
D.
,
2020
, “
Bio-Butanol as a New Generation of Clean Alternative Fuel for SI (Spark Ignition) and CI (Compression Ignition) Engines
,”
Renew. Energy
,
147
, pp.
2494
2521
.
16.
Sharma
,
N.
,
Agarwal
,
R. A.
, and
Agarwal
,
A. K.
,
2019
, “
Particulate Bound Trace Metals and Soot Morphology of Gasohol Fueled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022201
.
17.
Jiang
,
Q.
,
Zhang
,
C.
, and
Jiang
,
J.
,
2004
, “
Reduction of NOx in a Regenerative Industrial Furnace With the Addition of Methanol in the Fuel
,”
ASME J. Energy Resour. Technol.
,
126
(
2
), pp.
159
165
.
18.
Nord
,
A. J.
,
Hwang
,
J. T.
, and
Northrop
,
W. F.
,
2017
, “
Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022204
.
19.
Bata
,
R. M.
, and
Roan
,
V. P.
,
1989
, “
Effects of Ethanol and/or Methanol in Alcohol-Gasoline Blends on Exhaust Emissions
,”
ASME J. Eng. Gas Turbines Power
,
111
(
3
), pp.
432
438
.
20.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
.
21.
Brusstar
,
M. J.
, and
Gray
,
C. L.
,
2007
, “
High Efficiency With Future Alcohol Fuels in a Stoichiometric Medium Duty Spark Ignition Engine
,” SAE Technical Paper, 2007-01-3993.
22.
Chen
,
Z.
,
Wu
,
Z.
,
Liu
,
J.
, and
Lee
,
C.
,
2014
, “
Combustion and Emissions Characteristics of High n-Butanol/Diesel Ratio Blend in a Heavy-Duty Diesel Engine and EGR Impact
,”
Energy Convers. Manage.
,
78
, pp.
787
795
.
23.
Abu-Zaid
,
M.
,
Badran
,
O.
, and
Yamin
,
J.
,
2004
, “
Effect of Methanol Addition on the Performance of Spark-Ignition Engines
,”
Energy Fuels
,
18
(
2
), pp.
312
315
.
24.
Canakci
,
M.
,
Ozsezen
,
A. N.
,
Alptekin
,
E.
, and
Eyidogan
,
M.
,
2013
, “
Impact of Alcohol–Gasoline Fuel Blends on the Exhaust Emission of an SI Engine
,”
Renew. Energy
,
52
, pp.
111
117
.
25.
Eyidogan
,
M.
,
Ozsezen
,
A. N.
,
Canakci
,
M.
, and
Turkcan
,
A.
,
2010
, “
Impact of Alcohol–Gasoline Fuel Blends on the Performance and Combustion Characteristics of an SI Engine
,”
Fuel
,
89
(
10
), pp.
2713
2720
.
26.
Prasad
,
B. S. N.
,
Pandey
,
J. K.
, and
Kumar
,
G. N.
,
2020
, “
Impact of Changing Compression Ratio on Engine Characteristics of an SI Engine Fueled With Equi-Volume Blend of Methanol and Gasoline
,”
Energy
,
191
, p.
116605
.
27.
Yücesu
,
H. S.
,
Topgül
,
T.
,
Cinar
,
C.
, and
Okur
,
M.
,
2006
, “
Effect of Ethanol-Gasoline Blends on Engine Performance and Exhaust Emissions in Different Compression Ratios
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2272
2278
.
28.
He
,
B.
,
Wang
,
J.
,
Hao
,
J.
,
Yan
,
X.
, and
Xiao
,
J.
,
2003
, “
A Study on Emission Characteristics of an EFI Engine With Ethanol-Blended Gasoline Fuels
,”
Atmos. Environ.
,
37
(
7
), pp.
949
957
.
29.
Costagliola
,
M. A.
,
Prati
,
M. V.
,
Florio
,
S.
,
Scorletti
,
P.
,
Terna
,
D.
,
Iodice
,
P.
,
Buono
,
D.
, and
Senatore
,
A.
,
2016
, “
Performances and Emissions of a 4-Stroke Motorcycle Fueled With Ethanol/Gasoline Blends
,”
Fuel
,
183
, pp.
470
477
.
30.
Agarwal
,
A. K.
,
Shukla
,
P. C.
,
Gupta
,
J. G.
,
Patel
,
C.
,
Prasad
,
R. K.
, and
Sharma
,
N.
,
2015
, “
Unregulated Emissions From a Gasohol (E5, E15, M5, and M15) Fueled Spark-Ignition Engine
,”
Appl. Energy
,
154
, pp.
732
741
.
31.
Li
,
Y.
,
Ning
,
Z.
,
Lee
,
C. F.
,
Lee
,
T. H.
, and
Yan
,
J.
,
2018
, “
Performance and Regulated/Unregulated Emission Evaluation of a Spark-Ignition Engine Fueled With Acetone–Butanol–Ethanol and Gasoline Blends
,”
Energies
,
11
(
5
), p.
1121
.
32.
Poulopoulos
,
S. G.
,
Samaras
,
D. P.
, and
Philippopoulos
,
C. J.
,
2001
, “
Regulated and Unregulated Emissions From an Internal Combustion Engine Operating on Ethanol-Containing Fuels
,”
Atmos. Environ.
,
35
(
26
), pp.
4399
4406
.
33.
Liu
,
F. J.
,
Liu
,
P.
,
Zhu
,
Z.
,
Wei
,
Y. J.
, and
Liu
,
S. H.
,
2012
, “
Regulated and Unregulated Emissions From a Spark-Ignition Engine Fueled With Low-Blend Ethanol-Gasoline Mixtures
,”
Proc. Inst. Mech. Eng. Part D
,
226
(
4
), pp.
517
528
.
34.
Corral-Gómez
,
L.
,
Rubio-Gómez
,
G.
,
Rodriguez-Rosa
,
D.
,
Martín-Parra
,
A.
,
de la Rosa-Urbalejo
,
D.
, and
Martínez-Martínez
,
S.
,
2020
, “
A Comparative Analysis of Knock Severity in a Cooperative Fuel Research Engine Using Binary Gasoline–Alcohol Blends
,”
Int. J. Engine Res.
,
22
(
6
), pp.
1997
2009
.
35.
Kalwar
,
A.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2020
, “
Utilisation of Primary Alcohols in Dual-Fuel Injection Mode in a Gasoline Direct Injection Engine
,”
Fuel
,
276
, p.
118068
.
36.
Aghahossein
,
S. S.
,
Abdollahipoor
,
B.
,
Windom
,
B.
,
Reardon
,
K. F.
, and
Foust
,
T. D.
,
2020
, “
Effects of Blending C3–C4 Alcohols on Motor Gasoline Properties and Performance of Spark Ignition Engines: A Review
,”
Fuel Process. Technol.
,
197
, p.
106194
.
37.
Fan
,
Z.
,
Xia
,
Z.
,
Shijin
,
S.
,
Jianhua
,
X.
, and
Jianxin
,
W.
,
2010
, “
Unregulated Emissions and Combustion Characteristics of Low-Content Methanol−Gasoline Blended Fuels
,”
Energy Fuels
,
24
(
2
), pp.
1283
1292
.
38.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Book Company
,
New York
.
39.
Tian
,
Z.
,
Zhen
,
X.
,
Wang
,
Y.
,
Liu
,
D.
, and
Li
,
X.
,
2020
, “
Comparative Study on Combustion and Emission Characteristics of Methanol, Ethanol, and Butanol Fuel in TISI Engine
,”
Fuel
,
259
, p.
116199
.
40.
Li
,
Q.
,
Wu
,
J.
, and
Huang
,
Z.
,
2016
, “
Laminar Flame Characteristics of C1–C5 Primary Alcohol-Isooctane Blends at Elevated Temperature
,”
Energies
,
9
(
7
), p.
511
.
41.
Prasad
,
B. S. N.
, and
Kumar
,
G. N.
,
2019
, “
Influence of Ignition Timing on Performance and Emission Characteristics of an SI Engine Fueled With Equi-Volume Blend of Methanol and Gasoline
,”
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
, pp.
1
15
.
42.
Feng
,
H.
,
Xiao
,
S.
,
Nan
,
Z.
,
Wang
,
D.
, and
Yang
,
C.
,
2021
, “
Thermodynamic Analysis of Using Ethanol–Methanol–Gasoline Blends in a Turbo-Charged, Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120903
.
43.
Automotive Vehicles—Exhaust Emissions—Gaseous Pollutants From Vehicles Fitted With Compression Ignition Engines—Method of Measurement
,” IS-14273,
1999
.
44.
Zhang
,
C.
,
Ge
,
Y.
,
Tan
,
J.
,
Peng
,
Z.
, and
Wang
,
X.
,
2017
, “
Emissions From Light-Duty Passenger Cars Fueled With Ternary Blend of Gasoline, Methanol, and Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062202
.
45.
Rice
,
R. W.
,
Sanyal
,
A. K.
,
Elrod
,
A. C.
, and
Bata
,
R. M.
,
1991
, “
Exhaust Gas Emissions of Butanol, Ethanol, and Methanol-Gasoline Blends
,”
ASME J. Eng. Gas Turbine Power
,
113
(
3
), pp.
377
381
.
46.
Wei
,
Y.
,
Shenghua
,
L.
,
Li
,
H.
,
Rui
,
Y.
,
Jie
,
L.
, and
Ying
,
W.
,
2008
, “
Effects of Methanol/Gasoline Blends on a Spark-Ignition Engine Performance and Emissions
,”
Energy Fuels
,
22
(
2
), pp.
1254
1259
.
47.
Klimstra
,
J.
, and
Westing
,
J.
,
1995
, “
NO2 From Lean-Burn Engines—On Its Lower Sensitivity to Leaning Than NO
,” SAE Technical Paper 950158.
48.
Rahim
,
A.
,
Jaafar
,
N. M.
,
Nazri
,
M.
,
Sapee
,
S.
, and
Elraheem
,
H. F.
,
2016
, “
Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made From Different Plant Oil Feedstocks in a Liquid Fuel Burner
,”
Energies
,
9
(
8
), p.
659
.
49.
Zervas
,
E.
,
Montagne
,
X.
, and
Lahaye
,
J.
,
2001
, “
C1−C5 Organic Acid Emissions From an SI Engine: Influence of Fuel and Air/Fuel Equivalence Ratio
,”
Environ. Sci. Technol.
,
35
(
13
), pp.
2746
2751
.
50.
Wei
,
Y.
,
Liu
,
S.
,
Liu
,
F.
,
Liu
,
J.
,
Zhu
,
Z.
, and
Li
,
G.
,
2009
, “
Formaldehyde and Methanol Emissions From a Methanol/Gasoline-Fueled Spark-Ignition (SI) Engine
,”
Energy Fuels
,
23
(
6
), pp.
3313
3318
.
51.
Yao
,
D.
,
Ling
,
X.
, and
Wu
,
F.
,
2016
, “
Experimental Investigation on the Emissions of a Port Fuel Injection Spark Ignition Engine Fueled With Methanol–Gasoline Blends
,”
Energy Fuels
,
30
(
9
), pp.
7428
7434
.
52.
Wallner
,
T.
, and
Frazee
,
R.
,
2010
, “
Study of Regulated and Non-Regulated Emissions From Combustion of Gasoline, Alcohol Fuels and Their Blends in a DI-SI Engine
,” SAE Technical Paper 2010-01-1571.
53.
Correa
,
S. M.
, and
Arbilla
,
G.
,
2006
, “
Aromatic Hydrocarbons Emissions in Diesel and Biodiesel Exhaust
,”
Atmos. Environ.
,
40
(
35
), pp.
6821
6826
.
You do not currently have access to this content.