Abstract

The study of fluid flow through fractured porous media has drawn immense interest in the fields of soil hydrology, enhanced oil recovery (EOR), and others. In this work, a low-cost fractured micromodel with regular pore geometry is fabricated and visualization experiments are performed to study the flow field produced by single- and two-phase immiscible flows. The fractured micromodel is fabricated using polydimethylsiloxane (PDMS) substrate. The micro-particle image velocimetry (PIV) method is applied to map the flow velocity, both at the throat and near the fracture region of micromodel. In two-phase flow, imbibition flow experiments are performed to investigate the effects of fracture on the front migration caused by the trapping mechanism of residual fluid (displaced phase). The velocity distribution obtained for the two-phase flow revealed many peculiarities that are completely different from the single-phase flow pattern. These peculiarities create instabilities that yield random preferential flow paths near the pockets of stagnant fluid. Such dynamic events are quantified by mapping the velocity magnitude of flow fields. No effects of fracture are seen in the single-phase flow where uniform flow patterns are observed in the porous region. However, for the two-phase flow, more pockets of trapped fluids are found at the junction of two fractures.

References

1.
Duguid
,
J. O.
, and
Lee
,
P. C. Y.
,
1977
, “
Flow in Fractured Porous Media
,”
Water Resour. Res.
,
13
(
3
), pp.
558
566
.
2.
Hasham
,
A. A.
,
Abedini
,
A.
,
Jatukaran
,
A.
,
Persad
,
A.
, and
Sinton
,
D.
,
2018
, “
Visualization of Fracturing Fluid Dynamics in a Nanofluidic Chip
,”
J. Pet. Sci. Eng.
,
165
, pp.
181
186
.
3.
Fathollahi
,
A.
,
Rostami
,
B.
, and
Khosravi
,
M.
,
2019
, “
Fluid Displacement Mechanisms by Foam Injection Within a Microfluidic Matrix-Fracture System
,”
J. Pet. Sci. Eng.
,
176
, pp.
612
620
.
4.
Jamshidi
,
T.
,
Zeng
,
F.
,
Tontiwachwuthikul
,
P.
, and
Torabi
,
F.
,
2019
, “
Viability of Carbonated Water Injection (CWI) as a Means of Secondary Oil Recovery in Heavy Oil Systems in Presence and Absence of Wormholes: Microfluidic Experiments
,”
Fuel
,
249
, pp.
286
293
.
5.
Jia
,
Y.
,
Jiang
,
J.
,
Ma
,
X.
,
Li
,
Y.
,
Huang
,
H.
,
Cai
,
K.
,
Cai
,
S.
, and
Wu
,
Y.
,
2008
, “
PDMS Microchannel Fabrication Technique Based on Microwire-Molding
,”
Chin. Sci. Bull.
,
53
(
24
), pp.
3928
3936
.
6.
Conn
,
C. A.
,
Ma
,
K.
,
Hirasaki
,
G. J.
, and
Biswal
,
S. L.
,
2014
, “
Visualizing Oil Displacement With Foam in a Microfluidic Device With Permeability Contrast
,”
Lab Chip
,
14
(
20
), pp.
3968
3977
.
7.
Kianinejad
,
A.
,
Rashtchian
,
D.
,
Ghazanfari
,
M. H.
, and
Kharrat
,
R.
,
2014
, “
A Pore-Level Investigation of Surfactant-Crude Oil Displacements Behavior in Fractured Porous Media Using One-Quarter Five Spot Micromodels
,”
Energy Source Part A: Recovery Util. Environ. Eff.
,
36
(
7
), pp.
727
737
.
8.
Berkowitz
,
B.
,
2002
, “
Characterizing Flow and Transport in Fractured Geological Media: A Review
,”
Adv. Water Resour.
,
25
(
8–12
), pp.
861
884
.
9.
Zhao
,
B.
,
Macminn
,
C. W.
, and
Juanes
,
R.
,
2016
, “
Wettability Control on Multiphase Flow in Patterned Microfluidics
,”
PNAS
,
113
(
37
), pp.
10251
10256
.
10.
Ashraf
,
S.
, and
Phirani
,
J.
,
2019
, “
Capillary Displacement of Viscous Liquids in a Multi-Layered Porous Medium
,”
Soft Matter
,
15
(
9
), pp.
2057
2070
.
11.
Zhou
,
X.
,
AlOtaibi
,
F.
,
Kokal
,
S.
,
Alhashboul
,
A.
, and
Al-Qahtani
,
J.
,
2017
, “
A New Approach
of
Pressure Profile and Oil Recovery During Dual and Single Carbonate Core Flooding by Seawater and CO2 Injection Process at Reservoir Conditions
,”
SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition
,
Jakarta, Indonesia
,
Oct. 17–19
.
12.
Askarinezhad
,
R.
,
Hatzignatiou
,
D. G.
, and
Stavland
,
A.
,
2018
, “
Core-Based Evaluation of Associative Polymers as Enhanced Oil Recovery Agents in Oil-Wet Formations
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032915
.
13.
Mejia
,
L.
,
Tagavifar
,
M.
,
Xu
,
K.
,
Mejia
,
M.
,
Du
,
Y.
, and
Balhoff
,
M.
,
2019
, “
Surfactant Flooding in Oil-Wet Micromodels With High Permeability Fractures
,”
Fuel
,
241
, pp.
1117
1128
.
14.
Folch
,
A.
,
Ayon
,
A.
,
Hurtado
,
O.
,
Schmidt
,
M. A.
, and
Toner
,
M.
,
1999
, “
Molding of Deep Polydimethylsiloxane Microstructures for Microfluidics and Biological Applications
,”
ASME J. Biomech. Eng.
,
121
(
1
), pp.
28
34
.
15.
Wan
,
J.
,
Tokunaga
,
T. K.
,
Tsang
,
C. F.
, and
Bodvarsson
,
G. S.
,
1996
, “
Improved Glass Micromodel Methods for Studies of Flow and Transport in Fractured Porous Media
,”
Water Resour. Res.
,
32
(
7
), pp.
1955
1964
.
16.
Blois
,
G.
,
Barros
,
J. M.
, and
Christensen
,
K. T.
,
2015
, “
A Microscopic Particle Image Velocimetry Method for Studying the Dynamics of Immiscible Liquid–Liquid Interactions in a Porous Micromodel
,”
Microfluid Nanofluid
,
18
(
5–6
), pp.
1391
1406
.
17.
Kumar Gunda
,
N. S.
,
Bera
,
B.
,
Karadimitriou
,
N. K.
,
Mitra
,
S. K.
, and
Hassanizadeh
,
S. M.
,
2011
, “
Reservoir-on-a-Chip (ROC): A New Paradigm in Reservoir Engineering
,”
Lab Chip
,
11
(
22
), p.
3785
.
18.
Tsakiroglou
,
C. D.
, and
Avraam
,
D. G.
,
2002
, “
Fabrication of a New Class of Porous Media Models for Visualization Studies of Multiphase Flow Processes
,”
J. Mater. Sci.
,
37
(
2
), pp.
353
363
.
19.
Fand
,
R. M.
,
Kim
,
B. Y. K.
,
Lam
,
A. C. C.
, and
Phan
,
R. T.
,
1987
, “
Resistance to the Flow of Fluids Through Simple and Complex Porous Media Whose Matrices Are Composed of Randomly Packed Spheres
,”
ASME J. Fluids Eng.
,
109
(
3
), pp.
268
273
.
20.
Kececioglu
,
I.
, and
Jiang
,
Y.
,
1994
, “
Flow Through Porous Media of Packed Spheres Saturated With Water
,”
ASME J. Fluids Eng.
,
116
(
1
), pp.
164
170
.
21.
Chen
,
C.
,
Hirdes
,
D.
, and
Folch
,
A.
,
2003
, “
Gray-Scale Photolithography Using Microfluidic Photomasks
,”
Proc. Natl. Acad. Sci. USA
,
100
(
4
), pp.
1499
1504
.
22.
Xia
,
Y.
, and
Whitesides
,
G. M.
,
1998
, “
Soft Lithography
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
153
184
.
23.
Adrian
,
R. J.
,
2005
, “
Twenty Years of Particle Image Velocimetry
,”
Exp. Fluids
,
39
(
2
), pp.
159
169
.
24.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry A Practical Guide
,
Springer Berlin Heidelberg
,
Berlin/Heidelberg
.
25.
Roman
,
S.
,
Soulaine
,
C.
,
Alsaud
,
M. A.
,
Kovscek
,
A.
, and
Tchelepi
,
H.
,
2016
, “
Particle Velocimetry Analysis of Immiscible Two-Phase Flow in Micromodels
,”
Adv. Water Resour.
,
95
, pp.
199
211
.
26.
Sedaghat
,
M.
,
Mohammadzadeh
,
O.
,
Kord
,
S.
, and
Chatzis
,
I.
,
2016
, “
Heavy Oil Recovery Using ASP Flooding: A Pore-Level Experimental Study in Fractured Five-Spot Micromodels
,”
Can. J. Chem. Eng.
,
94
(
4
), pp.
779
791
.
27.
Mahdavi
,
S.
, and
James
,
L. A.
,
2019
, “
Micro and Macro Analysis of Carbonated Water Injection (CWI) in Homogeneous and Heterogeneous Porous Media
,”
Fuel
,
257
, p.
115916
.
28.
Abedi
,
B.
,
Ghazanfari
,
M. H.
, and
Kharrat
,
R.
,
2012
, “
Experimental Study of Polymer Flooding in Fractured Systems Using Five-Spot Glass Micromodel: The Role of Fracture Geometrical Properties
,”
Energy Explor. Exploit.
,
30
(
5
), pp.
689
705
.
29.
Saidian
,
M.
,
Ghazanfari
,
M. H.
,
Masihi
,
M.
, and
Kharrat
,
R.
,
2012
, “
Five-Spot Injection/Production Well Location Design Based on Fracture Geometrical Characteristics in Heavy Oil Fractured Reservoirs During Miscible Displacement: An Experimental Approach
,”
Chem. Eng. Commun.
,
199
(
2
), pp.
306
320
.
30.
Kianinejad
,
A.
,
Ghazanfari
,
M. H.
,
Kharrat
,
R.
, and
Rashtchian
,
D.
,
2013
, “
An Experimental Investigation of Surfactant Flooding as a Good Candidate for Enhancing Oil Recovery From Fractured Reservoirs Using One-Quarter Five Spot Micromodels: The Role of Fracture Geometrical Properties
,”
Energy Sources Part A: Recovery Util. Environ. Eff.
,
35
(
20
), pp.
1929
1938
.
31.
Hsu
,
S. Y.
,
Zhang
,
Z. Y.
, and
Tsao
,
C. W.
,
2017
, “
Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium
,”
Micromachines
,
8
(
2
), p.
38
.
32.
Meakin
,
P.
, and
Tartakovsky
,
A. M.
,
2009
, “
Modeling and Simulation of Pore-Scale Multiphase Fluid Flow and Reactive Transport in Fractured and Porous Media
,”
Rev. Geophys.
,
47
(
3
).
33.
Karadimitriou
,
N. K.
,
Musterd
,
M.
,
Kleingeld
,
P. J.
,
Kreutzer
,
M. T.
,
Hassanizadeh
,
S. M.
, and
Joekar-Niasar
,
V.
,
2013
, “
On the Fabrication of PDMS Micromodels by Rapid Prototyping, and Their Use in Two-Phase Flow Studies
,”
Water Resour. Res.
,
49
(
4
), pp.
2056
2067
.
34.
Haque
,
N.
,
Singh
,
A.
, and
Saha
,
U. K.
,
2019
, “
A Noble Method for Rapid Prototyping
of
Porous Micromodels Applicable to Enhanced Oil Recovery
,”
J. Phys. Conf. Ser.
,
Dubai, UAE
,
Dec. 5–7
,
1276
, p.
12022
.
35.
Lindken
,
R.
,
Rossi
,
M.
,
Große
,
S.
, and
Westerweel
,
J.
,
2009
, “
Micro-Particle Image Velocimetry (µPIV): Recent Developments, Applications, and Guidelines
,”
Lab Chip
,
9
(
17
), p.
2551
.
36.
Wereley
,
S. T.
, and
Meinhart
,
C. D.
,
2010
, “
Recent Advances in Micro-Particle Image Velocimetry
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
557
576
.
37.
Sen
,
D.
,
Nobes
,
D. S.
, and
Mitra
,
S. K.
,
2011
, “
Optical Measurement of Pore Scale Velocity Field Inside Microporous Media
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
189
200
.
38.
Thielicke
,
W.
, and
Stamhuis
,
E. J.
,
2014
, “
PIVlab—Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Software
,
2
.
39.
Morrow
,
N. R.
,
1970
, “
Physics and Thermodynamics of Capillary Action in Porous Media
,”
Ind. Eng. Chem.
,
62
(
6
), pp.
32
56
.
40.
Kazemifar
,
F.
,
Blois
,
G.
,
Kyritsis
,
D. C.
, and
Christensen
,
K. T.
,
2016
, “
Quantifying the Flow Dynamics of Supercritical CO2–Water Displacement in a 2D Porous Micromodel Using Fluorescent Microscopy and Microscopic PIV
,”
Adv. Water Resour.
,
95
, pp.
352
368
.
You do not currently have access to this content.