Abstract

Optimized fuel injection timings in internal combustion engines exhibit superior performance, combustion characteristics, and lower emissions. Particularly, particulate emissions from a gasoline direct injection (GDI) engines are highly dependent on fuel injection timings. GDI engines have emerged as a popular choice of power plants for automobiles among customers worldwide. They are preferred over multiple-port fuel injection (MPFI) engines in the transport sector because of their superior fuel economy and performance characteristics. The main objective of this study is to optimize a GDI engine for the lowest particulate emission at different fuel injection timings. GDI engine was investigated for particulate matter (PM) mass/particulate number (PN) emissions at five fuel injection timings (230, 250, 270, 290, and 310 deg bTDC), covering the entire envelope. Once the optimum fuel injection timing was determined, an engine exhaust particle sizer was used to measure the particle size-number distribution. Particulate samples from the engine were also collected on a filter paper for morphological investigations of particulates collected under optimized fuel injection timings. These experiments confirmed the importance and need to optimize the fuel injection timings at every engine operating point to reduce the PM/PN emissions from a GDI engine, which remains one of the biggest unresolved challenges to this technology.

References

1.
Agarwal
,
A. K.
,
Sharma
,
N.
,
Singh
,
A. P.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Patel
,
C.
,
2019
, “
Adaptation of Methanol–Dodecanol–Diesel Blend in Diesel Genset Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102203
.
2.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Particulate Morphology Characterization of Butanol–Gasoline Blend Fueled Spark-Ignition Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102303
.
3.
Zhao
,
F.
,
Lai
,
M.-C.
, and
Harrington
,
D. L.
,
1999
, “
Automotive Spark-Ignited Direct-Injection Gasoline Engines
,”
Prog. Energy Combust. Sci.
,
25
(
5
), pp.
437
562
.
4.
Bergvall
,
C.
, and
Westerholm
,
R.
,
2009
, “
Determination of Highly Carcinogenic Dibenzopyrene Isomers in Particulate Emissions From two Diesel-and Two Gasoline-Fuelled Light-Duty Vehicles
,”
Atmos. Environ.
,
43
(
25
), pp.
3883
3890
.
5.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2017
, “
Effect of the Fuel Injection Pressure on Particulate Emissions From a Gasohol (E15 and M15)-Fueled Gasoline Direct Injection Engine
,”
Energy Fuels
,
31
(
4
), pp.
4155
4164
.
6.
Kim
,
K.-H.
,
Kabir
,
E.
, and
Kabir
,
S.
,
2015
, “
A Review on the Human Health Impact of Airborne Particulate Matter
,”
Environ. Int.
,
74
, pp.
136
143
.
7.
Mimura
,
T.
,
Ichinose
,
T.
,
Yamagami
,
S.
,
Fujishima
,
H.
,
Kamei
,
Y.
,
Goto
,
M.
,
Takada
,
S.
, and
Matsubara
,
M.
,
2014
, “
Airborne Particulate Matter (PM2. 5) and the Prevalence of Allergic Conjunctivitis in Japan
,”
Sci. Total Environ.
,
487
, pp.
493
499
.
8.
Wang
,
X.
,
Zhao
,
H.
, and
Xie
,
H.
,
2015
, “
Effect of Piston Shapes and Fuel Injection Strategies on Stoichiometric Stratified Flame Ignition (SFI) Hybrid Combustion in a PFI/DI Gasoline Engine by Numerical Simulations
,”
Energy Convers. Manage.
,
98
, pp.
387
400
.
9.
Eastwood
,
P.
,
2008
,
Particulate Emissions From Vehicles
,
John Wiley & Sons
,
London, UK
.
10.
Chan
,
T. W.
,
Meloche
,
E.
,
Kubsh
,
J.
,
Rosenblatt
,
D.
,
Brezny
,
R.
, and
Rideout
,
G.
,
2012
, “
Evaluation of a Gasoline Particulate Filter to Reduce Particle Emissions From a Gasoline Direct Injection Vehicle
,”
SAE Int. J. Fuels Lubr.
,
5
(
3
), pp.
1277
1290
.
11.
Bock
,
N. R.
, and
Northrop
,
W. F.
,
2021
, “
Influence of Fuel Properties on Gasoline Direct Injection Particulate Matter Emissions Over First 200 s of World-Harmonized Light-Duty Test Procedure Using an Engine Dynamometer and Novel “Virtual Drivetrain” Software
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102307
.
12.
Mendoza
,
C.
,
Orozco
,
L. Y.
,
Palacio
,
J.
,
López
,
A. F.
, and
Agudelo
,
J. R.
,
2021
, “
Genotoxic and Mutagenic Activity of Particulate Matter Gathered in a High Emitter Automotive Diesel Engine Operated With Different Palm Oil-Derived Biofuels
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062301
.
13.
Kumar Bose
,
P.
, and
Banerjee
,
R.
,
2012
, “
An Experimental Investigation on the Role of Hydrogen in the Emission Reduction and Performance Trade-off Studies in an Existing Diesel Engine Operating in Dual-Fuel Mode Under Exhaust gas Recirculation
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
012601
.
14.
Sequera
,
A. J.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2011
, “
Effects of Fuel Injection Timing in the Combustion of Biofuels in a Diesel Engine at Partial Loads
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022203
.
15.
Keskinen
,
K.
,
Kaario
,
O.
,
Nuutinen
,
M.
,
Vuorinen
,
V.
,
Künsch
,
Z.
,
Liavåg
,
L. O.
, and
Larmi
,
M.
,
2016
, “
Mixture Formation in a Direct Injection Gas Engine: Numerical Study on Nozzle Type, Injection Pressure and Injection Timing Effects
,”
Energy
,
94
, pp.
542
556
.
16.
Ketterer
,
J. E.
, and
Cheng
,
W. K.
,
2014
, “
On the Nature of Particulate Emissions From DISI Engines at Cold-Fast-Idle
,”
SAE Int. J. Engines
,
7
(
2
), pp.
986
994
.
17.
Singh
,
A. P.
,
Sharma
,
N.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Agarwal
,
A. K.
,
2020
, “
Fuel Injection Strategy for Utilization of Mineral Diesel-Methanol Blend in a Common Rail Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
082305
.
18.
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2020
, “
Effect of Fuel Injection Pressure and Engine Speed on Performance, Emissions, Combustion, and Particulate Investigations of Gasohols Fuelled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042201
.
19.
Sharma
,
N.
,
Bachalo
,
W. D.
, and
Agarwal
,
A. K.
,
2020
, “
Spray Droplet Size Distribution and Droplet Velocity Measurements in a Firing Optical Engine
,”
Phys. Fluids
,
32
(
2
), p.
023304
.
20.
Bonatesta
,
F.
,
Chiappetta
,
E.
, and
La Rocca
,
A.
,
2014
, “
Part-Load Particulate Matter From a GDI Engine and the Connection with Combustion Characteristics
,”
Appl. Energy
,
124
, pp.
366
376
.
21.
Li
,
T.
,
Moon
,
S.
,
Sato
,
K.
, and
Yokohata
,
H.
,
2017
, “
A Comprehensive Study on the Factors Affecting Near-Nozzle Spray Dynamics of Multi-Hole GDI Injectors
,”
Fuel
,
190
, pp.
292
302
.
22.
Beavis
,
N. J.
,
Ibrahim
,
S. S.
, and
Malalasekera
,
W.
,
2017
, “
Impingement Characteristics of an Early Injection Gasoline Direct Injection Engine: A Numerical Study
,”
Int. J. Engine Res.
,
18
(
4
), pp.
378
393
.
23.
Tanaka
,
D.
,
Uchida
,
R.
,
Noda
,
T.
,
Kolbeck
,
A.
,
Henkel
,
S.
,
Hardalupas
,
Y.
,
Taylor
,
A.
, and
Aradi
,
A.
,
2017
, “
Effects of Fuel Properties Associated with in-Cylinder Behavior on Particulate Number From a Direct Injection Gasoline Engine
,” SAE Technical Paper No. 0148-7191.
24.
Roy
,
M. M.
,
2009
, “
Effect of Fuel Injection Timing and Injection Pressure on Combustion and Odorous Emissions in DI Diesel Engines
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032201
.
25.
Fakhari
,
A. H.
,
Shafaghat
,
R.
, and
Jahanian
,
O.
,
2020
, “
Numerical Simulation of a Naturally Aspirated Natural Gas/Diesel RCCI Engine for Investigating the Effects of Injection Timing on the Combustion and Emissions
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072301
.
26.
Park
,
C.
,
Kim
,
S.
,
Kim
,
H.
, and
Moriyoshi
,
Y.
,
2012
, “
Stratified Lean Combustion Characteristics of a Spray-Guided Combustion System in a Gasoline Direct Injection Engine
,”
Energy
,
41
(
1
), pp.
401
407
.
27.
Sharma
,
N.
,
Agarwal
,
R. A.
, and
Agarwal
,
A. K.
,
2019
, “
Particulate Bound Trace Metals and Soot Morphology of Gasohol Fueled Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022201
.
You do not currently have access to this content.