Abstract

Third-generation feedstocks and its constituent biofuels have shown promising results in the light of sustainable production and as a feasible fuel source for internal combustion (IC) engines. Hence, in this study, a third-generation microalgae feedstock (Scenedesmus quadricauda) biomass was cultivated sustainably using an in situ tubular photo bioreactor and raceway pond to synthesize quintet carbon chained amyl alcohol using Ehrlich biosynthetic pathway. On analyzing the synthesized amyl alcohol, a homogenous mixture of a 20% (vol/vol) amyl alcohol-diesel blend showed similarities with conventional diesel in their physio-chemical properties. This potential fuel source was analyzed though systematic experimentation at maximum throttle position condition in a light commercial vehicle compression ignition engine. The conducted experiments were directed by response surface methodology (RSM) coupled with central composite design (CCD) which delivered a set of influential and interactive responses on engine testing. At optimal operating condition, 0.7% rise in brake thermal efficiency (BTE) and an increased specific fuel consumption of 5.6% is reported due to the lower heating value of the biofuel. Furthermore, a 55.8% and 5.4% drop in smoke and carbon monoxide emissions is observed. However, oxides of nitrogen emission increases by 31.7% for biofuel operation as a tradeoff for the improved combustion characteristics achieved.

References

1.
Agarwal
,
A. K.
,
Sharma
,
N.
,
Singh
,
A. P.
,
Kumar
,
V.
,
Satsangi
,
D. P.
, and
Patel
,
C.
,
2019
, “
Adaptation of Methanol–Dodecanol–Diesel Blend in Diesel Genset Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102203
.
2.
Zhang
,
J.
,
Chen
,
G.
,
Shen
,
Y.
,
Li
,
B.
, and
Li
,
Q.
,
2021
, “
Effects of Oxygenated Biomass Fuels on the Performance of Diesel Engine and After-Treatment System
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p. 082034.
3.
Marcheschi
,
R. J.
,
Li
,
H.
,
Zhang
,
K.
,
Noey
,
E. L.
,
Kim
,
S.
,
Chaubey
,
A.
,
Houk
,
K. N.
, and
Liao
,
J. C.
, “
A Synthetic Recursive “+ 1” Pathway for Carbon Chain Elongation
,”
ACS Chem. Biol.
,
7
(
4
), pp.
689
697
.
4.
Drews
,
M.
,
Larsen
,
M. A.
, and
Balderrama
,
J. G.
, “
Projected Water Usage and Land-Use-Change Emissions From Biomass Production (2015–2050)
,”
Energy Strategy Rev.
,
29
, p.
100487
.
5.
Jacob
,
A.
,
Ashok
,
B.
,
Alagumalai
,
A.
,
Chyuan
,
O. H.
, and
Le
,
P. T.
, “
Critical Review on Third Generation Micro Algae Biodiesel Production and Its Feasibility as Future Bioenergy for IC Engine Applications
,”
Energy Convers. Manage.
,
228
, p.
113655
.
6.
Liu
,
F.
,
Lane
,
P.
,
Hewson
,
J. C.
,
Stavila
,
V.
,
Tran-Gyamfi
,
M. B.
,
Hamel
,
M.
,
Lane
,
T. W.
, and
Davis
,
R. W.
, “
Development of a Closed-Loop Process for Fusel Alcohol Production and Nutrient Recycling From Microalgae Biomass
,”
Bioresour. Technol.
,
283
, pp.
350
357
.
7.
Efremenko
,
E. N.
,
Nikolskaya
,
A. B.
,
Lyagin
,
I. V.
,
Senko
,
O. V.
,
Makhlis
,
T. A.
,
Stepanov
,
N. A.
,
Maslova
,
O. V.
,
Mamedova
,
F.
, and
Varfolomeev
,
S. D.
, “
Production of Biofuels From Pretreated Microalgae Biomass by Anaerobic Fermentation With Immobilized Clostridium Acetobutylicum Cells
,”
Bioresour. Technol.
,
114
, pp.
342
348
.
8.
Huo
,
Y. X.
,
Cho
,
K. M.
,
Rivera
,
J. G.
,
Monte
,
E.
,
Shen
,
C. R.
,
Yan
,
Y.
, and
Liao
,
J. C.
, “
Conversion of Proteins Into Biofuels by Engineering Nitrogen Flux
,”
Nature Nat. Biotechnol.
,
29
(
4
), pp.
346
351
.
9.
Yilmaz
,
N.
, “
Comparative Analysis of Biodiesel–Ethanol–Diesel and Biodiesel–Methanol–Diesel Blends in a Diesel Engine
,”
Energy
,
40
(
1
), pp.
210
213
.
10.
Li
,
F.
,
Yi
,
B.
,
Fu
,
W.
,
Song
,
L.
,
Liu
,
T.
,
Hu
,
H.
, and
Lin
,
Q.
,
2019
, “
Experimental Study on Spray Characteristics of Long-Chain Alcohol-Diesel Fuels in a Constant Volume Chamber
,”
J. Energy Inst.
,
92
(
1
), pp.
94
107
.
11.
Subramani
,
S.
,
Govindasamy
,
R.
, and
Rao
,
G. L.
, “
Predictive Correlations for NOx and Smoke Emission of DI CI Engine Fuelled With Diesel-Biodiesel-Higher Alcohol Blends-Response Surface Methodology Approach
,”
Fuel
,
269
, p.
117304
.
12.
Kumar
,
B. R.
,
Saravanan
,
S.
,
Rana
,
D.
, and
Nagendran
,
A.
, “
Combined Effect of Injection Timing and Exhaust gas Recirculation (EGR) on Performance and Emissions of a DI Diesel Engine Fuelled With Next-Generation Advanced Biofuel–Diesel Blends Using Response Surface Methodology
,”
Energy Convers. Manage.
,
123
, pp.
470
486
.
13.
EL-Seesy
,
A. I.
,
Nour
,
M.
,
Xuan
,
T.
,
He
,
Z.
, and
Hassan
,
H.
, “
Combustion and Emission Characteristics of a Diesel Engine Working With Diesel/Jojoba Biodiesel/Higher Alcohol Blends
,”
ASME 2020 Internal Combustion Engine Division Fall Technical Conference 2020
,
Denver, CO
,
Nov. 4
.
American Society of Mechanical Engineers Digital Collection
, Vol. 84034, p. V001T02A010.
14.
Babu
,
V.
, and
Murthy
,
M.
, “
Butanol and Pentanol: The Promising Biofuels for CI Engines—A Review
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
1068
1088
.
15.
Koç
,
E.
,
Çelik-Uzuner
,
S.
,
Uzuner
,
U.
, and
Çakmak
,
R.
, “
The Detailed Comparison of Cell Death Detected by Annexin V-PI Counterstain Using Fluorescence Microscope, Flow Cytometry and Automated Cell Counter in Mammalian and Microalgae Cells
,”
J. Fluoresc.
,
28
(
6
), pp.
1393
1404
.
16.
Mustapa
,
M.
,
Sallehudin
,
N. J.
,
Mohamed
,
M. S.
,
Noor
,
N. M.
, and
Raus
,
R. A.
,
2016
, “
Decontamination of Chlorella sp. Culture Using Antibiotics and Antifungal Cocktail Treatment
,”
ARPN J. Eng. Appl. Sci.
,
11
, pp.
104
109
.
You do not currently have access to this content.