Abstract

In recent decades, increasing attention has been paid on accurate modeling of circulating fluidized bed (CFB) risers to provide valuable guidance to design, optimization, and operation of reactors. Turbulence model plays an important role in the accurate prediction of complex gas-solid flows. Recently developed Wray–Agarwal (WA) model is a one-equation turbulence model with the advantages of high computational efficiency and competitive accuracy with two-equation models. In this paper for the first time, the Eulerian–Eulerian approach coupled with different turbulence models including WA model, standard κ–ɛ model, and shear stress transport (SST) κ–ω model is employed to simulate two-phase flows of gas phase and solid phase in two CFB risers, in order to assess accuracy and efficiency of WA model compared to other well-known two-equation models. Predicted gas-solid flow dynamic characteristics including the gas-solid volume fraction distributions in radial and axial directions, pressure profiles, and solid mass flux distributions are compared with data obtained from an experiment in detail. The results demonstrate that the WA model is very promising for accurate and efficient simulation of gas-solid multiphase flows.

References

1.
Wang
,
X.
,
Wang
,
X.
,
Kong
,
Z.
,
Shao
,
Y.
, and
Jin
,
B.
,
2020
, “
Auto-thermal Operation and Optimization of Coal-Fueled Separated Gasification Chemical Looping Combustion in a Pilot-Scale Unit
,”
Chem. Eng. J.
,
383
, p.
123159
.
2.
Mei
,
Y.
,
Zhao
,
M.
,
Lu
,
B.
,
Chen
,
S.
, and
Wang
,
W.
,
2017
, “
Numerical Comparison of Two Modes of Gas-Solid Riser Operation: Fluid Catalytic Cracking vs CFB Combustor
,”
Particuology
,
31
, pp.
42
48
.
3.
Fan
,
X.
,
Yang
,
L.
, and
Jiang
,
J.
,
2020
, “
Experimental Study on Industrial-Scale CFB Biomass Gasification
,”
Renewable Energy
,
158
, pp.
32
36
.
4.
Patel
,
A. M.
,
Cocco
,
R. A.
, and
Chew
,
J. W.
,
2020
, “
Key Influence of Clusters of Geldart Group B Particles in a Circulating Fluidized Bed Riser
,”
Chem. Eng. J.
,
413
, p.
127386
.
5.
Shao
,
Y.
,
Wang
,
X.
,
Jin
,
B.
,
Kong
,
Z.
,
Wang
,
X.
, and
Zhang
,
Y.
,
2019
, “
Gas–Solid Hydrodynamics of an IG-CLC System With a Two-Stage Counter-Flow Moving Bed Air Reactor
,”
Chem. Eng. Res. Des.
,
143
, pp.
100
113
.
6.
Wang
,
X.
,
Wang
,
X.
,
Zhang
,
S.
,
Kong
,
Z.
,
Jin
,
Z.
,
Shao
,
Y.
, and
Jin
,
B.
,
2018
, “
Test Operation of a Separated-Gasification Chemical Looping Combustion System for Coal
,”
Energy Fuels
,
32
(
11
), pp.
11411
11420
.
7.
Shao
,
Y.
,
Agarwal
,
R. K.
,
Li
,
J.
,
Wang
,
X.
, and
Jin
,
B.
,
2020
, “
Computational Fluid Dynamics–Discrete Element Model Simulation of Flow Characteristics and Solids’ Residence Time Distribution in a Moving Bed Air Reactor for Chemical Looping Combustion
,”
Ind. Eng. Chem. Res.
,
59
(
40
), pp.
18180
18192
.
8.
Wang
,
X.
,
Wang
,
X.
,
Shao
,
Y.
, and
Jin
,
B.
,
2020
, “
Three-Dimensional Modelling of the Multiphase Hydrodynamics in a Separated-Gasification Chemical Looping Combustion Unit During Full-Loop Operation
,”
J. Cleaner Prod.
,
275
, p.
122782
.
9.
Lungu
,
M.
,
Siame
,
J.
, and
Mukosha
,
L.
,
2021
, “
Comparison of CFD-DEM and TFM Approaches for the Simulation of the Small Scale Challenge Problem 1
,”
Powder Technol.
,
378
, pp.
85
103
.
10.
Li
,
J.
,
Agarwal
,
R. K.
,
Zhou
,
L.
, and
Yang
,
B.
,
2019
, “
Investigation of a Bubbling Fluidized Bed Methanation Reactor by Using CFD-DEM and Approximate Image Processing Method
,”
Chem. Eng. Sci.
,
207
, pp.
1107
1120
.
11.
Zhu
,
L. T.
,
Liu
,
Y. X.
,
Tang
,
J. X.
, and
Luo
,
Z. H.
,
2019
, “
A Material-Property-Dependent Sub-grid Drag Model for Coarse-Grained Simulation of 3D Large-Scale CFB Risers
,”
Chem. Eng. Sci.
,
204
, pp.
228
245
.
12.
Zhu
,
L. T.
,
Yang
,
Y. N.
,
Pan
,
D. T.
, and
Luo
,
Z. H.
,
2020
, “
Capability Assessment of Coarse-Grid Simulation of Gas-Particle Riser Flow Using Sub-grid Drag Closures
,”
Chem. Eng. Sci.
,
213
, p.
115410
.
13.
Heynderickx
,
G. J.
,
Das
,
A. K.
,
De Wilde
,
J.
, and
Marin
,
G. B.
,
2004
, “
Effect of Clustering on Gas-Solid Drag in Dilute Two-Phase Flow
,”
Ind. Eng. Chem. Res.
,
43
(
16
), pp.
4635
4646
.
14.
Ullah
,
A.
,
Amanat
,
A.
,
Imran
,
M.
,
Gillani
,
S. S. J.
,
Kilic
,
M.
, and
Khan
,
A.
,
2020
, “
Effect of Turbulence Modeling on Hydrodynamics of a Turbulent Contact Absorber
,”
Chem. Eng. Process.—Process Intensif.
,
156
, p.
108101
.
15.
Brown
,
G. J.
,
Fletcher
,
D. F.
,
Leggoe
,
J. W.
, and
Whyte
,
D. S.
,
2020
, “
Application of Hybrid RANS-LES Models to the Prediction of Flow Behaviour in an Industrial Crystalliser
,”
Appl. Math. Modell.
,
77
, pp.
1797
1819
.
16.
Han
,
X.
,
2018
,
Development and Application of Hybrid Wray–Agarwal Turbulence Model and Large-Eddy Simulation
,
Washington University in St. Louis
,
St. Louis, MO
.
17.
Zhao
,
Y.
,
Akolekar
,
H. D.
,
Weatheritt
,
J.
,
Michelassi
,
V.
, and
Sandberg
,
R. D.
,
2020
, “
RANS Turbulence Model Development Using CFD-Driven Machine Learning
,”
J. Comput. Phys.
,
411
, p.
109413
.
18.
Hassan
,
M. I.
, and
Makkawi
,
Y. T.
,
2018
, “
A Hydrodynamic Model for Biomass Gasification in a Circulating Fluidized Bed Riser
,”
Chem. Eng. Process.—Process Intensif.
,
129
, pp.
148
161
.
19.
Rossbach
,
V.
,
Padoin
,
N.
,
Meier
,
H. F.
, and
Soares
,
C.
,
2020
, “
Influence of Acoustic Waves on the Solids Dispersion in a Gas-Solid CFB Riser: Numerical Analysis
,”
Powder Technol.
,
359
, pp.
292
304
.
20.
Bastos
,
J. C. S. C.
,
Rosa
,
L. M.
,
Mori
,
M.
,
Marini
,
F.
, and
Martignoni
,
W. P.
,
2008
, “
Modelling and Simulation of a Gas–Solids Dispersion Flow in a High-Flux Circulating Fluidized Bed (HFCFB) Riser
,”
Catal. Today
,
130
(
2
), pp.
462
470
.
21.
Wang
,
S.
,
Gao
,
J.
,
Lu
,
H.
,
Liu
,
G.
,
Xu
,
P.
, and
Sun
,
L.
,
2012
, “
Simulation of Flow Behavior of Particles by Cluster Structure-Dependent Drag Coefficient Model for Chemical Looping Combustion Process: Air Reactor Modeling
,”
Fuel Process. Technol.
,
104
, pp.
219
233
.
22.
Li
,
T.
,
Dietiker
,
J. F.
, and
Shahnam
,
M.
,
2012
, “
MFIX Simulation of NETL/PSRI Challenge Problem of Circulating Fluidized Bed
,”
Chem. Eng. Sci.
,
84
, pp.
746
760
.
23.
Carlos Varas
,
A. E.
,
Peters
,
E. A. J. F.
, and
Kuipers
,
J. A. M.
,
2017
, “
CFD-DEM Simulations and Experimental Validation of Clustering Phenomena and Riser Hydrodynamics
,”
Chem. Eng. Sci.
,
169
, pp.
246
258
.
24.
Li
,
J. S.
,
Zhu
,
L. T.
,
Yan
,
W. C.
,
Rashid
,
T. A. B.
,
Xu
,
Q. J.
, and
Luo
,
Z. H.
,
2021
, “
Coarse-Grid Simulations of Full-Loop Gas-Solid Flows Using a Hybrid Drag Model: Investigations on Turbulence Models
,”
Powder Technol.
,
379
, pp.
108
126
.
25.
Wray
,
T. J.
, and
Agarwal
,
R. K.
,
2015
, “
Low-Reynolds-Number One-Equation Turbulence Model Based on k-ɛ Closure
,”
AIAA J.
,
53
(
8
), pp.
2216
2227
.
26.
Han
,
X.
,
Wray
,
T. J.
,
Fiola
,
C.
, and
Agarwal
,
R. K.
,
2015
, “
Computation of Flow in S Ducts With Wray-Agarwal One-Equation Turbulence Model
,”
J. Propul. Power
,
31
(
5
), pp.
1338
1349
.
27.
Wen
,
T.
, and
Agarwal
,
R. K.
,
2019
, “
A New Extension of Wray-Agarwal Wall Distance Free Turbulence Model to Rough Wall Flows
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
.
28.
Gopalan
,
H.
,
2018
, “
Evaluation of Wray-Agarwal Turbulence Model for Simulation of Neutral and Non-Neutral Atmospheric Boundary Layers
,”
J. Wind Eng. Ind. Aerodyn.
,
182
, pp.
322
329
.
29.
Ouyang
,
Y.
,
Tang
,
K. L.
,
Xiang
,
Y.
,
Zou
,
H. K.
,
Chu
,
G. W.
,
Agarwal
,
R. K.
, and
Chen
,
J. F.
,
2019
, “
Evaluation of Various Turbulence Models for Numerical Simulation of a Multiphase System in a Rotating Packed Bed
,”
Comput. Fluids
,
194
, p.
104296
.
30.
Tang
,
K. L.
,
Ouyang
,
Y.
,
Agarwal
,
R. K.
,
Chen
,
J. M.
,
Xiang
,
Y.
, and
Chen
,
J. F.
,
2020
, “
Computation of Gas-Liquid Flow in a Square Bubble Column With Wray-Agarwal One-Equation Turbulence Model
,”
Chem. Eng. Sci.
,
218
, p.
115551
.
31.
Yu
,
L.
,
Lu
,
J.
,
Zhang
,
X.
, and
Zhang
,
S.
,
2007
, “
Numerical Simulation of the Bubbling Fluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow (KTGF)
,”
Fuel
,
86
(
5
), pp.
722
734
.
32.
Shuai
,
W.
,
Guodong
,
L.
,
Huilin
,
L.
,
Juhui
,
C.
,
Yurong
,
H.
, and
Jiaxing
,
W.
,
2011
, “
Fluid Dynamic Simulation in a Chemical Looping Combustion With Two Interconnected Fluidized Beds
,”
Fuel Process. Technol.
,
92
(
3
), pp.
385
393
.
33.
Shao
,
Y.
,
Zhang
,
Y.
,
Wang
,
X.
,
Wang
,
X.
,
Jin
,
B.
, and
Liu
,
H.
,
2017
, “
Three-Dimensional Full Loop Modeling and Optimization of an In Situ Gasification Chemical Looping Combustion System
,”
Energy Fuels
,
31
(
12
), pp.
13859
13870
.
34.
ANSYS Inc. (Release-15.0)
,
2015
,
ANSYS Fluent Theory Guide
,
ANSYS Inc.
,
Canonsburg, PA
, pp.
1
759
.
35.
Xu
,
H.
,
Wray
,
T. J.
, and
Agarwal
,
R. K.
,
2017
, “
Application of a New DES Model Based on Wray-Agarwal Turbulence Model for Simulation of Wall-Bounded Flows With Separation
,”
Proceedings of the 47th AIAA Fluid Dynamic Conference 2017
,
Denver, CO
,
June 5–9
.
36.
Yin
,
S.
,
Jin
,
B.
,
Zhong
,
W.
,
Lu
,
Y.
,
Shao
,
Y.
, and
Liu
,
H.
,
2014
, “
Gas-Solid Flow Behavior in a Pressurized High-Flux Circulating Fluidized Bed Riser
,”
Chem. Eng. Commun.
,
201
(
3
), pp.
352
366
.
37.
Yin
,
S.
,
Jin
,
B.
,
Zhong
,
W.
,
Lu
,
Y.
,
Zhang
,
Y.
,
Shao
,
Y.
, and
Liu
,
H.
,
2012
, “
Solids Holdup of High Flux Circulating Fluidized Bed at Elevated Pressure
,”
Chem. Eng. Technol.
,
35
(
5
), pp.
904
910
.
38.
Li
,
T.
,
Gel
,
A.
,
Pannala
,
S.
,
Shahnam
,
M.
, and
Syamlal
,
M.
,
2014
, “
CFD Simulations of Circulating Fluidized Bed Risers, Part I: Grid Study
,”
Powder Technol.
,
254
, pp.
170
180
.
39.
Li
,
T.
,
Dietiker
,
J. F.
, and
Shadle
,
L.
,
2014
, “
Comparison of Full-Loop and Riser-Only Simulations for a Pilot-Scale Circulating Fluidized Bed Riser
,”
Chem. Eng. Sci.
,
120
, pp.
10
21
.
You do not currently have access to this content.