Abstract

In recent days, sophisticated instruments have emerged to obtain an online measurement of performance parameters from centrifugal pump of different kinds and the signals can be directed to the hands of pump users through mobile applications. With this in mind, a centrifugal pump of low specific speed was chosen for cavitation studies from 80% to 120% of nominal flowrate and for three different speeds. An assessment was carried out for cavitation noise signature from those operating conditions of that pump. The result of cavitation noise based on peak magnitude as well as average revealed nature in relation to cavitation coefficient, and it greatly depends on the flowrate with respect to nominal flowrate. The noise envelope for the flowrate at best efficiency and above was having a similar trend whereas at flows less than the nominal, it was totally different. So the criteria for finding the deviation in noise cannot be uniform for all flowrates. In this paper, the method adapted was to impose a trend line to the measured cavitation noise information and to find out the deviation with respect to normal operating conditions. It was concluded that detection of abnormality in pumps due to cavitation effects requires the current operating condition to be diagnosed first and then proper criteria for deviation in noise has to be imposed.

References

1.
McNulty
,
P. J.
, and
Pearsall
,
I. S.
,
1982
, “
Cavitation Inception in Pumps
,”
ASME J. Fluids Eng.
,
104
(
1
), pp.
99
104
.
2.
Minami
,
S.
,
Kawaguchi
,
K.
, and
Homma
,
T.
,
1960
, “
Experimental Study on Cavitation in Centrifugal Pump Impellers
,”
Bull. JSME
,
3
(
9
), pp.
19
29
.
3.
Horie
,
C.
, and
Kawaguchi
,
K.
,
1959
, “
Cavitation Tests on an Axial Flow Pump
,”
Bull. JSME
,
2
(
5
), pp.
187
195
.
4.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammitt
,
F. G.
,
1970
,
Cavitation
,
McGraw Hill
,
New York
.
5.
Murakami
,
M.
,
Minemura
,
K.
, and
Takimoto
,
M.
,
1980
, “
Effects of Entrained Air on the Performance of Centrifugal Pumps Under Cavitating Conditions
,”
Bull. JSME
,
23
(
183
), pp.
1435
1442
.
6.
Bolleter
,
U.
,
Schwarz
,
D.
,
Carney
,
B.
, and
Gordon
,
E. A.
,
1991
, “
Solution to Cavitation Induced Vibration Problems in Crude Oil Pipeline Pumps
,”
Proceedings of the 8th International Pump Users Symposium
,
Houston, TX
,
Mar. 5–7
, pp. 21–27.
7.
Wood
,
A. B.
,
1955
,
A Textbook of Sound
, 3rd ed.,
Orient Longmans
,
Bombay
.
8.
Romero
,
O. J.
, and
Hupp
,
A.
,
2014
, “
Subsea Electrical Submersible Pump Significance in Petroleum Offshore Production
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012902
.
9.
Chudina
,
M.
,
2003
, “
Detection of Cavitation Phenomenon in a Centrifugal Pump Using Audible Sound
,”
Mech. Syst. Signal Process
,
17
(
6
), pp.
1335
1347
.
10.
Sloteman
,
D. P.
,
2007
, “
Cavitation in High Energy Pumps—Detection and Assessment of Damage Potential
,”
Proceedings of the 23rd International Pump Users Symposium
,
George R. Brown Convention Center, Houston, TX
,
Mar. 5–8
, pp. 29–38.
11.
Jazi
,
A. M.
, and
Rahimzadeh
,
H.
,
2009
, “
Waveform Analysis of Cavitation in a Globe Valve
,”
Ultrasonics
,
49
(
6–7
), pp.
577
582
.
12.
Fu
,
Y.
,
Yuan
,
J.
,
Yuan
,
S.
,
Pace
,
G.
,
d’Agostino
,
L.
,
Huang
,
P.
, and
Li
,
X.
,
2015
, “
Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011101
.
13.
Lazarkiewicz
,
S.
, and
Troskolanski
,
A.
,
1965
,
Impeller Pumps
,
Pergamon
,
Oxford, UK
.
14.
ASME
,
2005
,
Test Uncertainty
,
The American Society of Mechanical Engineers
,
New York
, Standard No. PTC 19.1.
15.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
16.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME Journal Fluids Engineering
,
107
(
2
), pp.
161
164
.
17.
Christopher
,
S.
, and
Kumaraswamy
,
S.
,
2011
, “
Experimental Study of Cavitation Hysteresis on Radial Flow Pump
,”
Mech. Eng. Div. Inst. Eng. India
,
92
(
1
), pp.
34
39
. http://hdl.handle.net/11717/12233
18.
Latorre
,
R.
,
1980
, “
Study of Tip Vortex Cavitation Noise From Foils
,”
Int. Ship Build. Prog.
,
27
(
307
), pp.
66
85
.
19.
Ligneul
,
P.
,
Crance
,
C.
, and
Bovis
,
A.
,
1983
, “
Tip Vortex Cavitation Noise of a Screw Propeller Theory and Experiments
,”
Proceedings of 2nd International Conference on Cavitation
,
Heriot-Watt University, Edinburgh, Scotland
,
Sept. 6–8
, pp.
289
297
.
20.
Kumaraswamy
,
S.
,
1986
, “
Cavitation Studies of Centrifugal Pumps
,”
Ph.D. thesis
,
Indian Institute of Technology Madras
,
Chennai, Tamil Nadu, India
.
21.
IS: 9137-1978
,
2002
,
Indian Standard “Code for Acceptance Test for Centrifugal, Mixed Flow and Axial Pumps – Class C” Reaffirmed, Bureau of Indian Standards, New Delhi, India
.
22.
Ardizzon
,
G.
, and
Pavesi
,
G.
,
1995
, “
Theoretical Evaluation of the Effects of the Impeller Entrance Geometry and of the Incident Angle on Cavitation Inception in Centrifugal Pumps
,”
Proc. Inst. Mech. Eng., Part C
,
209
(
1
), pp.
29
38
.
23.
Christopher
,
S.
, and
Kumaraswamy
,
S.
,
2013
, “
Identification of Critical NPSH From Noise and Vibration in a Radial Flow Pump for Different Leading Edge Profiles of the Vane
,”
ASME J. Fluids Eng.
,
135
(
12
), p.
121301
.
24.
Qandil
,
M. D.
,
Abbas
,
I. A.
,
ElGammal
,
T.
,
Abdelhadi
,
I. A.
, and
Amano
,
S. R.
,
2020
, “
Water Energy Resource Innovation on the Cavitation Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022106
.
25.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pumps
, 2nd ed.,
John Wiley
,
New York
.
26.
Černetič
,
J.
, and
Čudina
,
M.
,
2011
, “
Estimating Uncertainty of Measurements for Cavitation Detection in a Centrifugal Pump
,”
Measurement
,
44
(
7
), pp.
1293
1299
.
27.
Fang
,
K. S.
,
1973
, “
A Proposal for the Standardization of NPSH Determination
,”
Standards for Pump Makers and Users. Proceedings of the 3rd Technical Conference of the British Pump Manufacturer’s Association. A3
,
Cambridge
,
March
, pp.
29
34
.
28.
Christopher
,
S.
, and
Kumaraswamy
,
S.
,
2014
, “
Flow Visualization Study on Radial Flow Pump Under Cavitation Conditions
,”
Appl. Mech. Mater.
,
592–594
, pp.
1919
1923
.
29.
Yongshun
,
Z.
,
Zhifeng
,
Y.
,
Fujun
,
W.
,
Ruofu
,
X.
, and
Chenglian
,
H.
,
2020
, “
Experimental Investigation on Pressure Fluctuation Reduction in a Double Suction Centrifugal Pump: Influence of Impeller Stagger and Blade Geometry
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041202
.
30.
Gülich
,
J. F.
,
2014
,
Centrifugal Pumps
, 3rd ed.,
Springer
,
Switzerland
.
31.
Mousmoulis
,
G.
,
Karlsen-Davies
,
N.
,
Aggidis
,
G.
,
Anagnostopoulos
,
I.
, and
Papantonis
,
D.
,
2019
, “
Experimental Analysis of Cavitation in a Centrifugal Pump Using Acoustic Emission, Vibration Measurements and Flow Visualization
,”
Eur. J. Mech. B Fluids
,
75
, pp.
300
311
.
32.
Guelich
,
J. F.
,
1992
, “
Diagnosis of Cavitation in Centrifugal Pumps
,”
Sulzer Tech. Rev.
,
74
(
1
), pp.
29
35
.
You do not currently have access to this content.