Abstract

The scope of this work was to establish a one-zone thermodynamic calculation model to analyze 13B multi-side port rotary engine on the base of Mazda RX-8. Volume variation was calculated according to the basic geometrical data of the engine and heat transfer was calculated using Wilmer’s heat transfer coefficient. Combustion process was defined as heat addition according to Vibe function and simultaneously converting fresh charge to combustion products. To account related losses, discharge drag, leakage, crevice volumes, and mean friction pressure were taken into account. The port fuel injection (homogeneous mixture) was used in the model assumptions. Model calculations were validated with experimental data. Many parameters were investigated in the model such as combustion chamber pressure, mass and engine torque at different speeds, and full load conditions. Moreover, the effect of the Vibe parameter, combustion duration, and intake port variations on the torque was investigated. The highest torque value was observed in the model with only primary intake port at low rpm (1000–3750 rpm) and primary and secondary port at mid rpm (3750–6250 rpm). Higher torque values were obtained from two secondary and two auxiliaries than primary, secondary, and auxiliary in the literature at high rpm (6250–8500 rpm). Combustion duration, Vibe parameter, and variations of different intake ports have a significant effect on the engine characteristics. The thermodynamic model developed in this study may be used as an effective tool to examine the performance parameters of the Wankel engine.

References

1.
Froede
,
W. G.
,
1961
, “
The NSU-Wankel Rotating Combustion Engine
,”
SAE Technical Paper No. 610017
, pp.
179
203
.
2.
Bracco
,
F. V.
, and
Sirignano
,
W. A.
,
1973
, “
Theoretical Analysis of Wankel Engine Combustion
,”
Combust. Sci. Technol.
,
7
(
3
), pp.
109
123
.
3.
Danieli
,
G. A.
,
Ferguson
,
C. R.
,
Heywood
,
J. B.
, and
Keck
,
J. C.
,
1974
, “
Predicting the Emissions and Performance Characteristics of a Wankel Engine
,”
SAE Technical Paper No. 740186
, pp.
805
820
.
4.
Danieli
,
G. A.
,
Keck
,
J. C.
, and
Heywood
,
J. B.
,
1978
, “
Experimental and Theoretical Analysis of Wankel Engine Performance
,”
SAE Paper No. 780416
, pp.
1
21
.
5.
Sierens
,
R.
,
Baert
,
R.
,
Winterbone
,
D. E.
, and
Baruah
,
P. C.
,
1983
, “
A Comprehensive Study of Wankel Engine Performance
,”
SAE Paper No. 830332
, pp.
1
18
.
6.
Atesmen
,
K. M.
,
1975
, “
Heat Transfer in Rotary Combustion Engines
,”
ASME J. Heat Transfer Trans. ASME
,
97
(
2
), pp.
288
293
.
7.
Tsao
,
K. C.
, and
Losinger
,
D.
,
1974
, “
Mass Burning Rate in a Rotary Engine
,”
SAE Paper No. 741089
, pp.
1
13
.
8.
Nguyen
,
H. L.
,
1987
, “
Performance and Combustion Characteristics of Direct-Injection Stratified Charge Rotary Engines
,”
NASA Technical Memorandum Report No. N88-12490
.
9.
Roberts
,
J. A.
,
Norman
,
T. J.
,
Ekchian
,
J. A.
, and
Heywood
,
J. B.
,
1986
, “
Computers Models for Evaluating Premixed and Disc Wankel Engine Performance
,”
SAE Paper No. 860613
, pp.
1
15
.
10.
Eberle
,
M. K.
, and
Klomp
,
E. D.
,
1973
, “
An Evaluation of the Potential Performance Gain From Leakage Reduction in Rotary Engines
,”
SAE Paper No. 730117
, pp.
454
460
.
11.
McCuiston
,
F. D.
,
1975
, “
An Analytical Evaluation of the Effect of Leakage on No Emissions From a Rotary Engine
,”
SAE Paper No. 750023
, pp.
135
140
.
12.
Namazian
,
M.
, and
Heywood
,
J. B.
,
1982
, “
Flow in the Piston-Cylinder-Ring Crevices of a Spark-Ignition Engine: Effect on Hydrocarbon Emissions
,”
SAE Paper No. 820088
, pp.
1
26
.
13.
Norman
,
T. J.
,
1983
, “
A Performance Model of a Spark Ignition Wankel Engine: Including the Effects of Crevice Volume, Gas Leakage and Heat Transfer
,” M.Sc. dissertation,
University of B.S.M.E.
,
Amherst
.
14.
Okimoto
,
H.
,
Ohzeki
,
H.
, and
Kawachi
,
M.
,
1983
, “
Improvement of Rotary Engine Performance by New Induction System
,”
SAE Paper No. 831010
, pp.
1
11
.
15.
Muroki
,
T.
,
1984
, “
Recent Technology Development of High-Powered Rotary Engine at Mazda
,”
SAE Paper No. 841017
, pp.
1
10
.
16.
Dost
,
T.
, and
Getzlaff
,
J.
,
2020
, “
Design and Simulation of a Multi Fuel Gas Mixture System of a Wankel Rotary Engine
,”
SAE Technical Paper No. 2020-01-0548
, pp.
1
16
.
17.
Tartakovsky
,
L.
,
Baibikov
,
V.
,
Gutman
,
M.
,
Veinblat
,
M.
, and
Reif
,
J.
,
2012
, “
Simulation of Wankel Engine Performance Using Commercial Software for Piston Engines
,”
SAE Technical Paper No. 2012-32-0098
, pp.
1
14
.
18.
Peden
,
M.
,
Turner
,
M.
,
Turner
,
J. W. G.
, and
Bailey
,
N.
,
2018
, “
Comparison of 1-D Modelling Approaches for Wankel Engine Performance Simulation and Initial Study of the Direct Injection Limitations
,”
SAE Technical Paper No. 2018-01-1452
, pp.
1
16
.
19.
Jeng
,
D. Z.
,
Hsieh
,
M. J.
,
Lee
,
C. C.
, and
Han
,
Y.
,
2013
, “
The Intake and Exhaust Pipe Effect on Rotary Engine Performance
,”
Society of Automotive Engineers of Japan (JSAE), 20139161
, pp.
1
9
.
20.
Shih
,
T.
,
Yang
,
S.
, and
Schock
,
H.
,
1986
, “
A Two-Dimensional Numerical Study of the Flow Inside the Combustion Chamber of a Motored Rotary Engine
,”
SAE Technical Paper No. 860615
, pp.
1
14
.
21.
Grasso
,
F.
,
Wey
,
M.
,
Bracco
,
F.
, and
Abraham
,
J.
, “
Three-Dimensional Computations of Flows in a Stratified-Charge Rotary Engine
,”
SAE Technical Paper No. 870409
, pp.
1
67
.
22.
Harikrishnan
,
T. V.
,
Challa
,
S.
, and
Radhakrishna
,
D.
,
2016
, “
Numerical Investigation on the Effects of Flame Propagation in Rotary Engine Performance With Leakage and Different Recess Shapes Using Three-Dimensional Computational Fluid Dynamics
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052210
.
23.
Fan
,
B.
,
Zhang
,
Y.
,
Pan
,
J.
,
Wang
,
Y.
, and
Otchere
,
P.
,
2021
, “
Experimental and Numerical Study on the Formation Mechanism of Flow Field in a Side-Ported Rotary Engine Considering Apex Seal Leakage
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022303
.
24.
Jeng
,
D. Z.
,
Hsieh
,
M. J.
,
Lee
,
C. C.
, and
Han
,
Y.
,
2013
, “
The Numerical Investigation on the Performance of Rotary Engine With Leakage, Different Fuels and Recess Sizes
,”
SAE Technical Paper No. 2013-32-9160
, pp.
1
12
.
25.
Chen
,
W.
,
Zuo
,
Q.
,
Pan
,
J.
,
Zhang
,
J.
,
Wang
,
Z.
,
Zhang
,
B.
,
Zhu
,
G.
, and
Fan
,
B.
,
2020
, “
Combustion Performance Improvement of a Diesel Fueled Wankel Stratified Charge Combustion Engine by Optimizing Assisted Ignition Strategy
,”
Energy Convers. Manage.
,
205
, pp.
1
12
.
26.
Spreitzer
,
J.
,
Zahradnik
,
F.
, and
Geringer
,
B.
,
2015
, “
Implementation of a Rotary Engine (Wankel Engine) in a CFD Simulation Tool With Special Emphasis on Combustion and Flow Phenomena
,”
SAE Technical Paper No. 2015-01-0382
, pp.
1
15
.
27.
Taşkıran
,
Ö. O.
,
Çalık
,
A. T.
, and
Kutlar
,
O. A.
,
2019
, “
Comparison of Flow Field and Combustion in Single and Double Side Ported Rotary Engine
,”
Fuel
,
254
, pp.
1
14
.
28.
Fan
,
B.
,
Pan
,
J.
,
Tang
,
A.
,
Pan
,
Z.
,
Zhu
,
Y.
, and
Xue
,
H.
,
2015
, “
Experimental and Numerical Investigation of the Fluid Flow in a Side-Ported Rotary Engine
,”
Energy Convers. Manage.
,
95
, pp.
385
397
.
29.
Yang
,
J.
,
Ji
,
C.
,
Wang
,
S.
,
Wang
,
D.
,
Shi
,
C.
,
Ma
,
Z.
, and
Zhang
,
B.
,
2018
, “
Numerical Study of Hydrogen Direct Injection Strategy on Mixture Formation and Combustion Process in a Partially Premixed Gasoline Wankel Rotary Engine
,”
Energy Convers. Manage.
,
176
, pp.
184
193
.
30.
Chen
,
W.
,
Pan
,
J.
,
Fan
,
B.
,
Otchere
,
P.
,
Miao
,
N.
, and
Lu
,
Y.
,
2018
, “
Numerical Investigation of Dual-Fuel Injection Timing on Air-Fuel Mixing and Combustion Process in a Novel Natural Gas-Diesel Rotary Engine
,”
Energy Convers. Manage.
,
176
, pp.
334
348
.
31.
Cihan
,
Ö.
,
Doğan
,
H. E.
,
Kutlar
,
O. A.
, and
Demirci
,
A.
,
2020
, “
Evaluation of Heat Release and Combustion Analysis in Spark Ignition Wankel and Reciprocating Engine
,”
Fuel
,
261
, pp.
1
10
.
32.
Kutlar
,
O. A.
,
Cihan
,
Ö.
,
Doğan
,
H. E.
, and
Demirci
,
A.
,
2018
, “
The Effect of Different Intake Port Geometries of a Single—Rotor Wankel Engine on Performance and Emissions at Part-Load Conditions
,”
J. Fac. Eng. Archit. Gazi Univ.
,
33
(
3
), pp.
809
819
.
33.
Ansdale
,
R. F.
,
1968
,
The Wankel RC Engine
,
Iliffe Books Ltd
,
London
.
34.
Yamamoto
,
K.
,
1981
,
Rotary Engine
,
Sankaido Co Ltd
,
Japan
.
35.
Bensinger
,
W.-D.
,
1973
,
Rotationskolben-Verbrennungsmotoren
,
Springer-Verlag
,
Berlin
.
36.
Vibe
,
I. I.
,
1970
,
Brennverlauf und Kreisprozess Vonnverbrennungmotoren
,
Veb Verlag Technic
,
Berlin
.
37.
Dimpelfeld
,
P.
, and
Humke
,
A.
,
1987
, “
Heat Release Characteristics of Stratified—Charge Rotary Engines
,”
SAE Paper No. 870443
, pp.
1
11
.
38.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals. Automotive Technology Series
,
McGraw-Hill International Editions
,
Singapore
.
39.
Kutlar
,
O. A.
,
1986
, “
Wankel Engine
,” B.Sc. dissertation,
Istanbul Technical University
,
Istanbul
.
40.
Kutlar
,
O. A.
, and
Malkaz
,
F.
,
2019
, “
Two-Stroke Wankel Type Rotary Engine: A New Approach for Higher Power Density
,”
Energies
,
12
(
21
), pp.
1
22
.
41.
Woschni
,
G.
,
1967
, “
A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,”
SAE Paper No. 670931
, pp.
3065
3083
.
42.
Wilmers
,
G.
,
1971
, “
Berechnung Der Gasseitigen Vorgange Im Kreiskolbenmotor System NSU-Wankel
,” Ph.D. dissertation,
Stuttgart University
,
Stuttgart
.
43.
Burcat
,
A.
, and
Ruscic
,
B.
,
2005
, “
Third Millennium Ideal Gas and Condensed Phase Thermo Chemical Database for Combustion With Updates From Active Thermochemical Tables
,”
Argonne National Laboratory, Israel Institute of Technology
.
44.
Kolchin
,
A.
, and
Demidov
,
V.
,
1984
,
Design of Automotive Engines
,
Mir Publishers
,
Moscow
.
45.
Fleck
,
B. J.
,
Fleck
,
R.
,
Kee
,
R. J.
, and
Thornhill
,
D. J.
,
2003
, “
The Evaluation of Discharge Coefficients in the Cylinders of High Performance Two-Stroke Engines
,”
SAE Paper No. 2003-32-0029
, pp.
1
15
.
46.
Akça
,
Y. E.
,
Biricik
,
S.
, and
Isik
,
A. S.
,
2012
, “
Calculation of Discharge Coefficient and Designing the Experimental Setup of Wankel Engines
,” B.Sc. dissertation,
Istanbul Technical University
,
Istanbul
.
47.
Basshuysen
,
R. V.
, and
Schäfer
,
F.
,
2002
,
Internal Combustion Engine Handbook
,
SAE International
,
Warrendale, PA
.
48.
Basshuysen
,
R.
,
Stutzenberger
,
H.
, and
Vogt
,
R.
,
1982
, “
Unterschiede im Reibungsverhalten Zwischen Kreiskolbenmotoren und Hubkolbenmotoren Von Audi
,”
Automobiltech. Z.
,
84
(
11
), pp.
573
576
.
49.
Ohkubo
,
M.
,
Tashima
,
S.
, and
Shimizu
,
R.
,
2004
, “
Developed Technologies of the New Rotary Engine (Renesis)
,”
SAE Paper No. 2004-01-1790
, pp.
1
13
.
You do not currently have access to this content.