Abstract

In this article, a novel quadruple cycle for power generation is presented. It consists of a gas turbine cycle, a Brayton cycle of supercritical carbon dioxide, a Rankin organic cycle with a cyclopentane working fluid, a Rankin steam cycle, a central tower, and a heliostat solar field. Because of improving the Brayton cycle's performance, supercritical carbon dioxide and the Rankine organic cycle have been added to the system. A solar tower system has been used to heat the incoming airflow to the combustion chamber. The heat generated by the solar tower in the first part increases the gas turbine cycle's air temperature, and in the second part, the water vapor heats the Rankin steam cycle. Due to solar radiation instability, the proposed system's performance is dynamically examined every hour of the year, and the results are reported. The thermodynamic simulation results are validated by thermoflex software and reference case with high accuracy. In this regard, energy, exergy, exergoeconomic, exergoenvironmental, emergoeconomic, and emergoenvironmental (6E) analyses have been performed for this system. The result indicates that the gas turbine cycle's fuel consumption is reduced by about 9% to 1.53 kg/s with the solar system's addition. Using solar energy and the Rankin steam cycle, the cycle's production capacity will increase from 43 MW to 66 MW.

References

1.
Polyzakis
,
A. L.
,
Koroneos
,
C.
, and
Xydis
,
G.
,
2008
, “
Optimum Gas Turbine Cycle for Combined Cycle Power Plant
,”
Energy Convers. Manage.
,
49
(
4
), pp.
551
563
.
2.
Yang
,
F.
,
Zhang
,
H.
,
Bei
,
C.
,
Song
,
S.
, and
Wang
,
E.
,
2015
, “
Parametric Optimization and Performance Analysis of ORC (Organic Rankine Cycle) for Diesel Engine Waste Heat Recovery With a Fin-and-Tube Evaporator
,”
Energy
,
91
, pp.
128
141
.
3.
Nazari
,
N.
,
Heidarnejad
,
P.
, and
Porkhial
,
S.
,
2016
, “
Multi Objective Optimization of a Combined Steam Organic Rankine Cycle Based on Exergy and Exergoeconomic Analysis for Waste Heat Recovery Application
,”
Energy Convers. Manage.
,
127
, pp.
366
379
.
4.
Betelmal
,
E. H.
,
Farhat
,
S.
, and
Agnew
,
B.
,
2017
, “
Exergy Analysis for Brayton and Inverse Brayton Cycles With Steam Injection
,”
Energy.
,
6
(
6
), pp.
1
5
.
5.
Wang
,
X.
, and
Dai
,
Y.
,
2016
, “
Exergoeconomic Analysis of Utilizing the Transcritical CO2 Cycle and the ORC for a Recompression Supercritical CO2 Cycle Waste Heat Recovery: A Comparative Study
,”
Appl. Energy
,
170
, pp.
193
207
.
6.
Hossain
,
M. J.
,
Chowdhury
,
J. I.
,
Balta-Ozkan
,
N.
,
Asfand
,
F.
,
Saadon
,
S.
, and
Imran
,
M.
,
2021
, “
Design Optimization of Supercritical Carbon Dioxide (s-CO2) Cycles for Waste Heat Recovery From Marine Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120901
.
7.
Zhang
,
Q.
,
Wang
,
Z.
,
Du
,
X.
,
Yu
,
G.
, and
Wu
,
H.
,
2019
, “
Dynamic Simulation of Steam Generation System in Solar Tower Power Plant
,”
Renewable Energy.
,
135
, pp.
866
877
.
8.
Mehrpooya
,
M.
,
Ghorbani
,
B.
, and
Hosseini
,
S.
,
2018
, “
Thermodynamic and Economic Evaluation of a Novel Concentrated Solar Power System Integrated With Absorption Refrigeration and Desalination Cycles
,”
Energy Convers. Manage.
,
175
, pp.
337
356
.
9.
Ghorbani
,
B.
,
Javadi
,
Z.
,
Zendehboudi
,
S.
, and
Amidpour
,
M.
,
2020
, “
Energy, Exergy and Economic Analysis of a New Integrated System for Generation of Power and Liquid Fuels Using Liquefied Natural Gas Regasification and Solar Collectors
,”
Energy Convers. Manage.
,
219
, p.
112915
.
10.
Hasan
,
A.
,
Selim
,
O. M.
,
Abousabae
,
M.
,
Amano
,
R. S.
, and
Otieno
,
W.
,
2021
, “
Economic, Exergy and Environmental Analyses of the Energy Assessments for U.S. Industries
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112107
.
11.
Khoshgoftar Manesh
,
M. H.
,
Abdolmaleki
,
M.
,
Vazini Modabber
,
H.
, and
Rosen
,
M. A.
,
2021
, “
Dynamic Advanced Exergetic, Exergoeconomic, and Environmental Analyses of a Hybrid Solar City Gate Station
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102105
.
12.
Babaei Jamnani
,
M.
,
Ting
,
D. S.-K.
,
Carriveau
,
R.
, and
Kardgar
,
A.
,
2021
, “
Energy, Exergy, Environmental (3E) and Parametric Assessment of a Triple-Pressure Reheat Combined-Cycle Power Plant
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112104
.
13.
Aghbashlo
,
M.
, and
Rosen
,
M.
,
2018
, “
Consolidating Exergoeconomic and Exergoenvironmental Analyses Using the Emergy Concept for Better Understanding Energy Conversion Systems
,”
J. Cleaner Prod.
,
172
, pp.
696
708
.
14.
Mohammadi
,
K.
, and
McGowan
,
J. G.
,
2017
, “
Simulation and Characterization of a Hybrid Concentrated Solar Tower System for Co-Generation of Power and Fresh Water
,”
Proceedings of the ASME 2017 Power Conference, Charlotte, NC, June 26–30.
15.
Hou
,
S.
,
Zhou
,
Y.
,
Yu
,
L.
,
Zhang
,
F.
, and
Cao
,
S.
,
2018
, “
Optimization of the Combined Supercritical CO2 Cycle and Organic Rankine Cycle Using Zeotropic Mixtures for Gas Turbine Waste Heat Recovery
,”
Energy Convers. Manage.
,
160
, pp.
313
325
.
16.
Saidur
,
R.
,
BoroumandJazi
,
G.
,
Mekhlif
,
S.
, and
Jameel
,
M.
,
2012
, “
Exergy Analysis of Solar Energy Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
350
356
.
17.
Lozano
,
M.
, and
Valero
,
A.
,
1993
, “
Theory of the Exergetic Cost
,”
Energy
,
18
(
9
), pp.
939
939
.
18.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
,
2006
, “
SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems
,”
Energy
,
31
(
8–9
), pp.
1257
1289
.
19.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1995
,
Thermal Design and Optimization
,
John Wiley & Sons
,
New York
.
20.
Lozowski
,
D.
,
Ondrey
,
G.
,
Jenkins
,
S.
, and
Bailey
,
M.
,
2012
, “
Chemical Engineering Plant Cost Index (CEPCI)
,”
Chem. Eng.
,
119
, p.
84
.
21.
Ghaebi
,
H.
,
Saidi
,
M.
, and
Ahmadi
,
P.
,
2012
, “
Exergoeconomic Optimization of a Trigeneration System for Heating, Cooling and Power Production Purpose Based on TRR Method and Using Evolutionary Algorithm
,”
Appl. Therm. Eng.
,
36
, pp.
113
125
.
22.
Cavalcanti
,
E.
,
2017
, “
Exergoeconomic and Exergoenvironmental Analyses of an Integrated Solar Combined Cycle System
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
507
519
.
23.
Bastianoni
,
S.
,
Facchini
,
A.
,
Susani
,
L.
, and
Tiezzi
,
E.
,
2007
, “
Emergy as a Function of Exergy
,”
Energy
,
32
(
7
), pp.
1158
1162
.
24.
Khoshgoftar Manesh
,
M. H.
,
Firouzi
,
P.
,
Kabiri
,
S.
, and
Blanco-Marigorta
,
A. M.
,
2021
, “
Evaluation of Power and Freshwater Production Based on Integrated Gas Turbine, SCO2, and ORC Cycles With RO Desalination Unit
,”
Energy Convers. Manage.
,
228
, p.
113607
.
You do not currently have access to this content.