Abstract

The application of the oxy-fuel combustion technique could tackle the combustion process's environmental issues. Experiments were conducted on partially premixed air- and oxy-methane combustion flames stabilized over a novel perforated burner in the present work. The burner has a premixing ratio of 7.0. In oxy-fuel combustion, the experiments were performed at oxygen fractions (OF%: volumetric percentage of O2 in the oxidizer mixture) of 29%, 32%, and 36% and over a range of operating conditions necessary for a stable flame. The results of oxy-combustion flames were compared with the corresponding air-combustion flames at the same operating conditions. Two sets of statistical analyses were performed for further confirmation of the experimental results. The first set investigated the operating parameters’ effect, including OF and oxidizer Reynolds number (Re), on the upper flammability limits (UFL). Simultaneously, the second set studied the impact of OF and equivalence ratio on flame length. The experimental results revealed that the flammability limits get wider as the OF increases due to the resulting flame speed rise with O2-enrichment. The statistical analysis is conducted by analysis of variance (ANOVA) technique, which carries innovation and confirms that OF and Re significantly impacted the UFL. The visual flame length of oxy-flames was longer than its correspondents of air-flames due to the reduction of flame speed associated with the negative influence of CO2 dilution in oxy-flames. The statistical analysis showed a significant effect of OF and equivalence ratio on the visible flame appearance.

References

1.
Shao
,
Y.
,
Agarwal
,
R. K.
,
Wang
,
X.
, and
Jin
,
B.
,
2021
, “
Review of Computational Fluid Dynamics Studies on Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080802
.
2.
Han
,
T.
,
Hong
,
H.
,
Jin
,
H.
, and
Zhang
,
C.
,
2011
, “
An Advanced Power-Generation System With CO2 Recovery Integrating DME Fueled Chemical-Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
Paper No. ES2010-90199
, pp.
701
710
.
3.
Rahman
,
R. K.
,
Barak
,
S.
,
Manikantachari
,
K. R. V.
,
Ninnemann
,
E.
,
Hosangadi
,
A.
,
Zambon
,
A.
, and
Vasu
,
S. S.
,
2020
, “
Probing the Effects of NOx and SOx Impurities on Oxy-Fuel Combustion in Supercritical CO2: Shock Tube Experiments and Chemical Kinetic Modeling
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122302
.
4.
Pan
,
Z.
,
Yan
,
M.
,
Shang
,
L.
,
Li
,
P.
,
Zhang
,
L.
, and
Liu
,
J.
,
2020
, “
Thermoeconomic Analysis of a Combined Natural Gas Cogeneration System With a Supercritical CO2 Brayton Cycle and an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102108
.
5.
Strakey
,
P. A.
,
2019
, “
Oxy-Combustion Modeling for Direct-Fired Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070706
.
6.
Rashwan
,
S. S.
,
Ibrahim
,
A. H.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2017
, “
Experimental Study of Atmospheric Partially Premixed Oxy-Combustion Flames Anchored Over a Perforated Plate Burner
,”
Energy
,
122
, pp.
159
167
.
7.
Habib
,
M. A.
,
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Abdelhafez
,
A.
,
2017
, “
Stability Maps of Non-Premixed Methane Flames in Different Oxidizing Environments of a Gas Turbine Model Combustor
,”
Appl. Energy
,
189
, pp.
177
186
.
8.
Jin
,
B.
,
Su
,
M.
,
Zhao
,
H.
, and
Zheng
,
C.
,
2015
, “
Plantwide Control and Operating Strategy for Air Separation Unit in Oxy-Combustion Power Plants
,”
Energy Convers. Manage.
,
106
, pp.
782
792
.
9.
Jin
,
B.
,
Zhao
,
H.
,
Zou
,
C.
, and
Zheng
,
C.
,
2015
, “
Comprehensive Investigation of Process Characteristics for Oxy-Steam Combustion Power Plants
,”
Energy Convers. Manage.
,
99
, pp.
92
101
.
10.
Liu
,
J.
,
Gao
,
S.
,
Jiang
,
X.
,
Shen
,
J.
, and
Zhang
,
H.
,
2014
, “
NO Emission Characteristics of Superfine Pulverized Coal Combustion in the O2/CO2 Atmosphere
,”
Energy Convers. Manage.
,
77
, pp.
349
355
.
11.
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Review on Premixed Combustion Technology: Stability, Emission Control, Applications, and Numerical Case Study
,”
Energy Fuels
,
30
(
12
), pp.
9981
10014
.
12.
Nemitallah
,
M. A.
,
Rashwan
,
S. S.
,
Mansir
,
I. B.
,
Abdelhafez
,
A. A.
, and
Habib
,
M. A.
,
2018
, “
Review of Novel Combustion Techniques for Clean Power Production in Gas Turbines
,”
Energy Fuels
,
32
(
2
), pp.
979
1004
.
13.
Jerzak
,
W.
,
2020
, “
Thermodynamic Prediction of the Effect of Repeated Recirculation of Cooled Flue Gases on the Content of Major, Minor, and Trace Compounds in Oxy-Coal Combustion Products
,”
J. Power Technol.
,
100
(
2
), pp.
102
114
.
14.
Rashwan
,
S. S.
,
Mohany
,
A.
, and
Dincer
,
I.
,
2020
, “
Investigation of Self-Induced Thermoacoustic Instabilities in Gas Turbine Combustors
,”
Energy
,
190
, p.
116362
.
15.
Imteyaz
,
B.
,
Tahir
,
F.
, and
Habib
,
M. A.
,
2021
, “
Thermodynamic Assessment of Membrane-Assisted Premixed and Non-Premixed Oxy-Fuel Combustion Power Cycles
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052303
.
16.
Moghadasi
,
M. H.
,
Riazi
,
R.
,
Tabejamaat
,
S.
, and
Mardani
,
A.
,
2019
, “
Effects of Preheating and CO2 Dilution on Oxy-MILD Combustion of Natural Gas
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122002
.
17.
Meng
,
X.
,
Rokni
,
E.
,
Zhou
,
W.
,
Qi
,
H.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2020
, “
Emissions From Oxy-Combustion of Raw and Torrefied Biomass
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122307
.
18.
Liu
,
R.
,
Graebner
,
M.
,
Tsiava
,
R.
,
Zhang
,
T.
, and
Xu
,
S.
,
2021
, “
Simulation Analysis of the System Integrating Oxy-Fuel Combustion and Char Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032304
.
19.
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Rashwan
,
S. S.
, and
Habib
,
M. A.
,
2018
, “
Adiabatic Flame Temperature for Controlling the Macrostructures and Stabilization Modes of Premixed Methane Flames in a Model Gas-Turbine Combustor
,”
Energy Fuels
,
32
(
7
), pp.
7868
7877
.
20.
Abdelhafez
,
A.
,
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2018
, “
Stability Map and Shape of Premixed CH4/O2/CO2 Flames in a Model Gas-Turbine Combustor
,”
Appl. Energy.
,
215
, pp.
63
74
.
21.
Fureby
,
C.
,
Nordin-Bates
,
K.
,
Petterson
,
K.
,
Bresson
,
A.
, and
Sabelnikov
,
V.
,
2015
, “
A Computational Study of Supersonic Combustion in Strut Injector and Hypermixer Flow Fields
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
2127
2135
.
22.
Shi
,
B.
,
Hu
,
J.
, and
Ishizuka
,
S.
,
2015
, “
Carbon Dioxide Diluted Methane/Oxygen Combustion in a Rapidly Mixed Tubular Flame Burner
,”
Combust. Flame
,
162
(
2
), pp.
420
430
.
23.
Philip
,
S. A.
,
2011
, “
Dynamic Stability, Blowoff, and Flame Characteristics of Oxy-Fuel Combustion
,”
M.Sc. thesis
,
Mechanical Engineering, Massachusetts Institute of Technology
.
24.
Ditaranto
,
M.
, and
Jorgen
,
H.
,
2006
, “
Combustion Instabilities in Sudden Expansion Oxy-Fuel Flames
,”
Combust. Flame
,
146
(
3
), pp.
493
512
.
25.
Seepana
,
S.
, and
Jayanti
,
S.
,
2009
, “
Flame Structure and NO Generation in Oxy-Fuel Combustion at High Pressures
,”
Energy Convers. Manage.
,
162
(
2
), pp.
420
430
.
26.
Alberto
,
A.
,
Robert
,
H.
,
Noble
,
D. R.
,
Scarbourough
,
D.
,
D’carlo
,
P. A.
,
Seitzman
,
M.
, and
Lieuwen
,
T. C.
,
2010
, “
Experimental and Numerical Analysis of Hub-Corner Stall in Compressor Cascades
,”
Proceeding of ASME Turbo Expo
,
Glasgow, UK
,
June 14–18
,
Paper No. GT2010-22704
, pp.
289
299
.
27.
Hu
,
X.
,
Yu
,
Q.
,
Qin
,
Q.
, and
Wang
,
Z.
,
2013
, “
Experimental Investigation on Laminar Flame Speeds of Premixed CH4/O2/CO2 Mixture
,”
J. Northeast Univ.
,
34
(
11
), pp.
1593
1596
.
28.
Rashwan
,
S. S.
,
Ibrahim
,
A. H.
,
Abou-Arab
,
T. W.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Experimental Investigation of Partially Premixed Methane–Air and Methane–Oxygen Flames Stabilized Over a Perforated-Plate Burner
,”
Appl. Energy
,
169
, pp.
126
137
.
29.
Ramadan
,
I. A.
,
Ibrahim
,
A. H.
,
Abou-Arab
,
T. W.
,
Rashwan
,
S. S.
,
Nemitallah
,
M. A.
, and
Habib
,
M. A.
,
2016
, “
Effects of Oxidizer Flexibility and Bluff-Body Blockage Ratio on Flammability Limits of Diffusion Flames
,”
Appl. Energy
,
178
, pp.
19
28
.
30.
Emami
,
M. D.
,
Shahbazian
,
H.
, and
Sunden
,
B.
,
2019
, “
Effect of Operational Parameters on Combustion and Emissions in an Industrial Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012202
.
31.
Peng
,
J.
,
Cao
,
Z.
,
Yu
,
X.
,
Yan
,
B.
,
Qi
,
H.
,
Sun
,
R.
,
Yu
,
Y.
,
Chang
,
G.
, and
Gao
,
L.
,
2019
, “
Statistical Analysis of Volatile Combustion Time-Characteristics of Single Coal Particles Using High-Speed OH-PLIF
,”
Energy Fuels.
,
33
(
12
), pp.
12742
12748
.
32.
Perez
,
P. L.
, and
Boehman
,
A. L.
,
2009
, “
Experimental Study of Oxygen-Enriched Diesel Combustion Using Simulated Exhaust Gas Recirculation
,”
ASME J. Eng. Gas Turbines Power
,
131
(
4
), p.
042802
.
33.
Baharun
,
S.
,
Adnan
,
R.
,
Mohmaed
,
I.
,
Arshad
,
K. A.
,
Ahmed
,
T.
,
Rashid
,
M.
, and
Zamri
,
I.
,
2005
, “
Varaibles Affecting the Combustion Efficiency of a Clinical Waste Incineration Process
,”
J. Technol.
,
42
, pp.
11
24
.
34.
Rashwan
,
S.
,
Ibrahim
,
A.
, and
Abou-Arab
,
T.
,
2015
, “
Experimental Investigation of Oxy-Fuel Combustion of CNG Flames Stabilized Over
,”
18th IFRF Members Conference—Flexible and Clean Fuel Conversion to Industry
,
Freising, Germany
,
June 1–3
,
Paper No. 25
.
35.
Rashwan
,
S. S.
,
2018
, “
The Effect of Swirl Number and Oxidizer Composition on Combustion Characteristics of Non-Premixed Methane Flames
,”
Energy Fuels
,
32
(
2
), pp.
2517
2526
.
36.
Gamal
,
A. M.
,
Ibrahim
,
A. H.
,
Ali
,
E.-M. M.
,
Elmahallawy
,
F. M.
,
Abdelhafez
,
A.
,
Nemitallah
,
M. A.
,
Rashwan
,
S. S.
, and
Habib
,
M. A.
,
2017
, “
Structure and Lean Extinction of Premixed Flames Stabilized on Conductive Perforated Plates
,”
Energy Fuels
,
31
(
2
), pp.
1980
1992
.
You do not currently have access to this content.