Abstract

The main objective of this study is to investigate elaborately the relationship between exhaust gas temperature (EGT) and various operational parameters specific to aero-engine for the cruise phase. EGT prediction is performed based on different models, including deep learning (DL) and support vector machine (SVM), using a set of historical flight data, more than 1300. In order to achieve this goal, the EGT is taken as the output parameter while the most key variables for the EGT prediction are taken as the input parameters to the models. Several statistical goodness tests, namely root-mean-square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2), are conducted to make a fair comparison between the efficiency and performance of each model that is developed based on Matrix Laboratory (matlab) and R code. The relative importance for the altitude (ALT) parameter of 11.89% has the highest value while the lowest relatively importance parameter is vibration (VIB) of 5.00%. EGT variation for the actual data is in the range of 459.05 and 607.32 °C. It is observed that the EGT variation of DL and SVM ranges from 457.09 to 604.52 and from 454.64 to 603.23 °C, respectively. Furthermore, the prediction error for DL and SVM fluctuates between a minimum of −21.61 to a maximum of 22.50 °C and a minimum of −13.34 to a maximum of 12.44 °C, respectively. In the light of the statistical test results, it is concluded that the DL model with RMSE of 4.3922, MAE of 3.3981, and R2 of 0.9834 shows more excellent ability in predicting EGT than the SVM model with RMSE of 5.5212, MAE of 4.0527, and R2 of 0.9712. This study may effectively be applied to different aircraft types as a useful roadmap for academic and industrial researchers in this sort of application and it shed the light on optimizing performance for a specific aircraft by thermodynamic methods.

References

1.
Ilbas
,
M.
, and
Turkmen
,
M.
,
2012
, “
Estimation of Exhaust gas Temperature Using Artificial Neural Network in Turbofan Engines
,”
J. Therm. Sci. Technol.
,
32
(
2
), pp.
11
18
.
2.
Kumar
,
A.
,
Srivastava
,
A.
,
Goel
,
N.
, and
McMaster
,
J.
,
2015
, “
Exhaust gas Temperature Data Prediction by Autoregressive Models
,”
2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE)
,
IEEE
, pp.
976
981
.
3.
Fu
,
X.
, and
Zhong
,
S.
,
2013
, “Aeroengine Turbine Exhaust Gas Temperature Prediction Using Process Support Vector Machines,”
Advances in Neural Networks—ISNN 2013
,
D
Hutchison
,
T
Kanade
,
J
Kittler
,
JM
Kleinberg
,
F
Mattern
,
JC
Mitchell
,
M
Naor
,
O
Nierstrasz
,
C
Pandu Rangan
,
B
Steffen
,
M
Sudan
,
D
Terzopoulos
,
D
Tygar
,
MY
Vardi
,
G
Weikum
,
C
Guo
,
Z-G
Hou
, and
Z
Zeng
, eds.,
Springer Berlin Heidelberg
,
Berlin/Heidelberg
, pp.
300
310
.
4.
Yildirim
,
M. T.
, and
Kurt
,
B.
,
2018
, “
Aircraft Gas Turbine Engine Health Monitoring System by Real Flight Data
,”
Int. J. Aerosp. Eng.
,
2018
, pp.
1
12
.
5.
Balakrishnan
,
N.
,
Devasigamani
,
A. I.
,
Anupama
,
K. R.
, and
Sharma
,
N.
,
2021
, “
Aero-Engine Health Monitoring With Real Flight Data Using Whale Optimization Algorithm Based Artificial Neural Network Technique
,”
Opt. Mem. Neural Netw.
,
30
(
1
), pp.
80
96
.
6.
Liu
,
L.
,
Jiang
,
J.
, and
Lu
,
F.
,
2021
, “
An Intelligent Prediction Method of Aero-Engine Gas Path Performance Parameters
,”
J. Inst. Eng. (India): C
,
102
(
3
), pp.
595
602
.
7.
Ren
,
L.-H.
,
Ye
,
Z.-F.
, and
Zhao
,
Y.-P.
,
2020
, “
A Modeling Method for Aero-Engine by Combining Stochastic Gradient Descent with Support Vector Regression
,”
Aerosp. Sci. Technol.
,
99
, p.
105775
.
8.
Yılmaz
,
İ
,
2009
, “
Evaluation of the Relationship Between Exhaust gas Temperature and Operational Parameters in CFM56-7B Engines
,”
Proc. Inst. Mech. Eng., Part G
,
223
(
4
), pp.
433
440
.
9.
Wang
,
Z.
,
Zhao
,
N.
,
Wang
,
W.
,
Tang
,
R.
, and
Li
,
S.
,
2015
, “
A Fault Diagnosis Approach for Gas Turbine Exhaust Gas Temperature Based on Fuzzy C-Means Clustering and Support Vector Machine
,”
Math. Probl. Eng.
,
2015
, pp.
1
11
.
10.
Guo
,
J.
,
Zhong
,
Z.
,
Jiang
,
H.
, and
Zuo
,
H.
,
2021
, “
Identification Methods of Charged Particles Based on Aero-Engine Exhaust Gas Electrostatic Sensor Array
,”
Sci. Prog.
,
104
(
2
).
11.
Liu
,
L.
,
Peng
,
Y.
,
Wang
,
L.
,
Dong
,
Y.
,
D
,
L. I. U.
, and
Guo
,
Q.
,
2020
, “
Improving EGT Sensing Data Anomaly Detection of Aircraft Auxiliary Power Unit
,”
Chin. J. Aeronaut.
,
33
(
2
), pp.
448
455
.
12.
Tuzcu
,
H.
,
Sohret
,
Y.
, and
Caliskan
,
H.
,
2021
, “
Energy, Environment and Enviroeconomic Analyses and Assessments of the Turbofan Engine Used in Aviation Industry
,”
Environ. Prog. Sustainable Energy
,
40
(
3
), p.
e13547
.
13.
Zolghadri
,
A.
,
Henry
,
D.
,
Cieslak
,
J.
,
Efimov
,
D.
, and
Goupil
,
P.
,
2014
,
Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace Vehicles
,
Springer London
,
London
.
14.
Li
,
D.
,
Peng
,
J.
, and
He
,
D.
,
2020
, “
Aero-Engine Exhaust gas Temperature Prediction Based on LightGBM Optimized by Improved Bat Algorithm
,”
Therm. Sci.
,
25
, p.
246
.
15.
Ding
,
G.
,
Wang
,
X. W.
, and
Lei
,
D.
,
2013
, “
Aeroengine Exhaust Gas Temperature Prediction Using Process Neural Network with Time-Varying Threshold Functions
,”
Appl. Mech. Mater.
,
423-426
, pp.
2341
2346
.
16.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present and Future Trends
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.
17.
Yuvarajan
,
D.
,
Pradeep
,
K.
, and
Magesh Kumar
,
S.
,
2016
, “
Impact of Oxygenated Additives on Performance Characteristics of Methyl Ester in IC Engine
,”
Appl. Mech. Mater.
,
852
, pp.
724
728
.
18.
Yan
,
Y.
,
Yan
,
H.
,
Zhang
,
L.
,
Li
,
L.
,
Zhu
,
J.
, and
Zhang
,
Z.
,
2018
, “
Numerical Investigation on Combustion Characteristics of Methane/Air in a Micro-Combustor With a Regular Triangular Pyramid Bluff Body
,”
Int. J. Hydrogen Energy
,
43
(
15
), pp.
7581
7590
.
19.
Sayin
,
C.
,
Ertunc
,
H. M.
,
Hosoz
,
M.
,
Kilicaslan
,
I.
, and
Canakci
,
M.
,
2007
, “
Performance and Exhaust Emissions of a Gasoline Engine Using Artificial Neural Network
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
46
54
.
20.
Moll
,
A. v.
,
Behbahani
,
A. R.
,
Fralick
,
G. C.
,
Wrbanek
,
J. D.
, and
Hunter
,
G. W.
,
2014
, “
A Review of Exhaust Gas Temperature Sensing Techniques for Modern Turbine Engine Controls
,”
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
American Institute of Aeronautics and Astronautics
,
Reston, Virginia
.
21.
Alwi
,
A.
,
Zulkifli
,
N. W.
,
Sukiman
,
N. L.
,
Yusoff
,
A.
,
Zakaria
,
Z.
,
Jamshaid
,
M.
,
Hasnul
,
M. H.
, and
Amzar
,
M. S.
,
2019
, “
Evaluation of Engine Performance and Exhaust Emission Characteristics in a Diesel Engine Using Isobutanol-Calophyllum Inophyllum Biodiesel-Diesel Ternary Blends
,”
Environ. Sci. Pollut. Res. Int.
,
26
(
12
), pp.
11815
11826
.
22.
Akdeniz
,
H. Y.
, and
Balli
,
O.
,
2021
, “
Effects of Bypass Ratio Change Trend on Performance in a Military Aircraft Turbofan Engine With Comparative Assessment
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120905
.
23.
Cican
,
G.
,
Plesu
,
V.
,
Deaconu
,
M.
,
Toma
,
A.
, and
Cretu
,
M.
,
2019
, “
Performances and Emissions Evaluation of a Microturbojet Engine Running on Biodiesel Blends
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p. 072003.
24.
Lesmana
,
H.
,
Zhang
,
Z.
,
Li
,
X.
,
Zhu
,
M.
,
Xu
,
W.
, and
Zhang
,
D.
,
2019
, “
NH3 as a Transport Fuel in Internal Combustion Engines: A Technical Review
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070703
.
25.
Şöhret
,
Y.
, and
Gürbüz
,
H.
,
2021
, “
A Comparison of Gasoline, Liquid Petroleum Gas, and Hydrogen Utilization in an Spark Ignition Engine in Terms of Environmental and Economic Indicators
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052301
.
26.
Sahoo
,
B. B.
,
Dabi
,
M.
, and
Saha
,
U. K.
,
2021
, “
A Compendium of Methods for Determining the Exergy Balance Terms Applied to Reciprocating Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120801
.
27.
Ellis
,
M.
,
Bojdo
,
N.
,
Filippone
,
A.
, and
Clarkson
,
R.
,
2021
, “
Monte Carlo Predictions of Aero-Engine Performance Degradation Due to Particle Ingestion
,”
Aerospace
,
8
(
6
), p.
146
.
28.
Qu
,
C.
, and
Peng
,
H.
,
2015
, “
Study on the Life Estimation of Civil Aviation Engine
,”
Chem. Eng. Trans.
,
46
, pp.
1087
1092
.
29.
Vincent Wong
,
K.
,
2015
, “
Energy is Key to Shape of Commercial Flights in the Future
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
044701
.
30.
Sirignano
,
W. A.
, and
Liu
,
F.
,
1999
, “
Performance Increases for Gas-Turbine Engines Through Combustion Inside the Turbine
,”
J. Propul. Power
,
15
(
1
), pp.
111
118
.
31.
Heneghan
,
S. P.
,
Zabarnick
,
S.
,
Ballal
,
D. R.
, and
Harrison
,
W. E.
,
1996
, “
JP-8 + 100: The Development of High-Thermal-Stability Jet Fuel
,”
ASME J. Energy Resour. Technol.
,
118
(
3
), pp.
170
179
.
32.
Silva
,
V. V.
,
Khatib
,
W.
, and
Fleming
,
P. J.
,
2005
, “
Performance Optimization of gas Turbine Engine
,”
Eng. Appl. Artif. Intell.
,
18
(
5
), pp.
575
583
.
33.
Peng
,
H. B.
,
Dan
,
M.
, and
Qu
,
H. C.
,
2011
, “
Research of Aero-Engine Life Prediction Based on Take-Off EGTM
,”
Appl. Mech. Mater.
,
99−100
, pp.
286
292
.
34.
McCorrie
,
D. J.
,
Gaura
,
E.
,
Burnham
,
K.
,
Poole
,
N.
, and
Hazelden
,
R.
,
2015
, “Predictive Data Reduction in Wireless Sensor Networks Using Selective Filtering for Engine Monitoring,”
Wireless Sensor and Mobile Ad-Hoc Networks
,
D
Benhaddou
, and
A
Al-Fuqaha
, eds.,
Springer
,
New York
, pp.
129
148
.
35.
Razak
,
A.
,
2013
,
Gas Turbine Performance Modelling, Analysis and Optimisation, Modern Gas Turbine Systems
,
Elsevier
,
New York
,
423
514
.
36.
Şöhret
,
Y.
,
Ekici
,
S.
,
Altuntaş
,
Ö
,
Hepbasli
,
A.
, and
Karakoç
,
T. H.
,
2016
, “
Exergy as a Useful Tool for the Performance Assessment of Aircraft gas Turbine Engines: A key Review
,”
Prog. Aerosp. Sci.
,
83
, pp.
57
69
.
37.
Şöhret
,
Y.
,
Açıkkalp
,
E.
,
Hepbasli
,
A.
, and
Karakoc
,
T. H.
,
2015
, “
Advanced Exergy Analysis of an Aircraft gas Turbine Engine: Splitting Exergy Destructions Into Parts
,”
Energy
,
90
, pp.
1219
1228
.
38.
Doel
,
D. L.
,
1992
, “
TEMPER: A Gas-Path Analysis Tool for Commercial Jet Engines
,”
Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education
,
American Society of Mechanical Engineers
.
39.
Stevenson
,
J. D.
, and
Saravanamuttoo
,
H. I. H.
,
1995
, “
Simulating Indirect Thrust Measurement Methods for High-Bypass Turbofans
,”
ASME J. Eng. Gas Turbines Power
,
117
(
1
), pp.
38
46
.
40.
Lu
,
P.-J.
,
Zhang
,
M.-C.
,
Hsu
,
T.-C.
, and
Zhang
,
J.
,
2001
, “
An Evaluation of Engine Faults Diagnostics Using Artificial Neural Networks
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
340
346
.
41.
Gulen
,
S. C.
,
Griffin
,
P. R.
, and
Paolucci
,
S.
,
2002
, “
Real-Time On-Line Performance Diagnostics of Heavy-Duty Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
910
921
.
42.
Roth
,
B. A.
,
Doel
,
D. L.
, and
Cissell
,
J. J.
,
2005
, “
Probabilistic Matching of Turbofan Engine Performance Models to Test Data
,”
Volume 1: Turbo Expo 2005
,
ASMEDC
, pp.
541
548
.
43.
Visser
,
W. P. J.
,
Kogenhop
,
O.
, and
Oostveen
,
M.
,
2006
, “
A Generic Approach for Gas Turbine Adaptive Modeling
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
13
19
.
44.
Sorato
,
S.
,
Pascovici
,
D. S.
,
Ogaji
,
S. O. T.
, and
Pilidis
,
P.
,
2008
, “
Investigating the Emissions and Performance of High Bypass Ratio Aero-Engines
,”
Proc. Inst. Mech. Eng., Part G
,
222
(
4
), pp.
463
471
.
45.
Martin
,
S.
,
Wallace
,
I.
, and
Bates
,
D. G.
,
2008
, “
Development and Validation of a Civil Aircraft Engine Simulation Model for Advanced Controller Design
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p. 051601.
46.
Bouam
,
A.
,
Aïssani
,
S.
, and
Kadi
,
R.
,
2008
, “
Gas Turbine Performances Improvement Using Steam Injection in the Combustion Chamber Under Sahara Conditions
,”
Oil Gas Sci. Technol. - Revue de l'IFP
,
63
(
2
), pp.
251
261
.
47.
Sun
,
W. Z.
,
Qu
,
J. L.
,
Zhou
,
Y. P.
,
Liu
,
M. J.
, and
Gao
,
F.
,
2012
, “
A Novel Estimation Method on Delta Engine Gas Temperature of a Certain Aero-Engine Based on Flight Data
,”
Appl. Mech. Mater.
,
203
, pp.
375
379
.
48.
Nayyeri
,
H.
, and
Khorasani
,
K.
,
2012
, “
Modeling Aircraft Jet Engine and System Identification by Using Genetic Programming
,”
25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)
,
IEEE
, pp.
1
4
.
49.
Qiang
,
F.
, and
Ding
,
F.
,
2014
, “
Takeoff Performance Analysis Based on Aeroengine EGT Trend Monitoring and Control
,”
Appl. Mech. Mater.
,
680
, pp.
307
310
.
50.
Arellano
,
G. M.
,
Cant
,
R.
, and
Nolle
,
L.
,
2014
, “
Prediction of Jet Engine Parameters for Control Design Using Genetic Programming
,”
2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation
,
IEEE
, pp.
45
50
.
51.
Giorgi
,
M. G. d.
, and
Quarta
,
M.
,
2020
, “
Hybrid MultiGene Genetic Programming—Artificial Neural Networks Approach for Dynamic Performance Prediction of an Aeroengine
,”
Aerosp. Sci. Technol.
,
103
, p.
105902
.
52.
Villarreal-Valderrama
,
F.
,
Liceaga-Castro
,
E.
,
Zambrano-Robledo
,
P.
, and
Amezquita-Brooks
,
L.
,
2021
, “
Experimental Evaluation of Different Microturbojet EGT Modeling Approaches
,”
J. Aerosp. Eng.
,
34
(
1
), p.
4020087
.
53.
Koleini
,
I.
,
Roudbari
,
A.
, and
Marefat
,
V.
,
2018
, “
EGT Prediction of a Micro gas Turbine Using Statistical and Artificial Intelligence Approach
,”
IEEE Aerosp. Electron. Syst. Mag.
,
33
(
7
), pp.
4
13
.
54.
National Aeronautics and Space Administration
,
2020
, “
(NASA)
,” https://www.nasa.gov/
55.
Linke-Diesinger
,
A.
,
2008
,
Systems of Commercial Turbofan Engines: An Introduction to Systems Functions
,
Springer-Verlag, Berlin
/
Heidelberg
.
56.
Li
,
D.
, and
Yu
,
D.
,
2014
,
Deep Learning: Methods and Applications
,
Boston, MA
.
57.
Esteva
,
A.
,
Robicquet
,
A.
,
Ramsundar
,
B.
,
Kuleshov
,
V.
,
DePristo
,
M.
,
Chou
,
K.
,
Cui
,
C.
,
Corrado
,
G.
,
Thrun
,
S.
, and
Dean
,
J.
,
2019
, “
A Guide to Deep Learning in Healthcare
,”
Nat. Med.
,
25
(
1
), pp.
24
29
.
58.
Lashkarbolooki
,
M.
,
Vaferi
,
B.
, and
Mowla
,
D.
,
2012
, “
Using Artificial Neural Network to Predict the Pressure Drop in a Rotating Packed Bed
,”
Sep. Sci. Technol.
,
47
(
16
), pp.
2450
2459
.
59.
Ihya
,
B.
,
Mechaqrane
,
A.
,
Tadili
,
R.
, and
Bargach
,
M. N.
,
2015
, “
Prediction of Hourly and Daily Diffuse Solar Fraction in the City of Fez (Morocco)
,”
Theor. Appl. Climatol.
,
120
(
3–4
), pp.
737
749
.
60.
Car
,
Z.
,
Baressi Šegota
,
S.
,
Anđelić
,
N.
,
Lorencin
,
I.
, and
Mrzljak
,
V.
,
2020
, “
Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron
,”
Comput. Math. Methods Med.
,
2020
, p.
5714714
.
61.
Zahid
,
M.
,
Chen
,
Y.
,
Jamal
,
A.
, and
Memon
,
M. Q.
,
2020
, “
Short Term Traffic State Prediction via Hyperparameter Optimization Based Classifiers
,”
Sensors (Basel, Switzerland)
,
20
(
3
), p.
685
62.
Cangelosi
,
D.
,
Pelassa
,
S.
,
Morini
,
M.
,
Conte
,
M.
,
Bosco
,
M. C.
,
Eva
,
A.
,
Sementa
,
A. R.
, and
Varesio
,
L.
,
2016
, “
Artificial Neural Network Classifier Predicts Neuroblastoma Patients’ Outcome
,”
BMC Bioinformatics
,
17
(
Suppl 12
), p.
347
.
You do not currently have access to this content.