Abstract

Combustion of coal in thermal power plants generates ash as a residue, which depends on the quality of coal, specific to its ash content and calorific value. In a typical Indian scenario, a standard 210 MW thermal plant produces ∼57 T/hr total ash, which has 80:20 fly and bottom ash share, considering coal with 40% ash content. This study aims to harness the waste heat of fly ash collected at the bottom of the electrostatic precipitator (ESP) by coupling organic Rankine cycle (ORC) with 210 MW subcritical coal-fired thermal power plant works on R134a. Thermodynamic properties of R134a are taken from the PYroMAT library (python 3.6) to develop a computer-based program that estimates the variability of key parameters with respect to log mean temperature difference (LMTD). The main plant's efficiency was 28.714%, with main steam pressure, reheat pressure, and temperature being about 134.35 bar, 24.02 bar, and 540 °C, respectively, and combustion of coal is about 141.5 T/hr. The study shows additional generation from fly ash waste heat is about 30.5 kW with an increase in net power output (0.0145%) and net energy efficiency (0.0146%). The optimum value of LMTD for the evaporator, condenser, and recuperator is 40, 7, and 16 K, which yields the optimum energy efficiency and developed cost-effective design. The proposed system is economically analyzed, considering 25 years of equipment life and 14% of loan interest. The study shows that the payback period and the generation cost of electricity of ORC is about 6.22 years and INR 3.14 per kWh, respectively.

References

1.
Alvarez-Alvarado
,
J. M.
,
Rios-Moreno
,
G. J.
,
Ventura-Ramos
,
E.
,
Ronquillo-Lomeli
,
G.
, and
Trejo-Perea
,
M.
,
2019
, “
Experimental Study of a 1-kW Organic Rankine Cycle Using R245fa Working Fluid and a Scroll Expander: A Case Study
,”
IEEE Access
,
7
, pp.
154515
154523
.
2.
Realpe Jiménez
,
A.
, and
Diazgranados
,
J. A.
,
2012
, “
Electricity Generation and Wind Potential Assessment in Regions of Colombia Generación Eléctrica Y Evaluación Del Potencial De Energía Eólica En Regiones De Colombia
,”
Dyna
,
79
(
171
), pp.
116
122
. http://www.scielo.org.co/pdf/dyna/v79n171/a15v79n171.pdf
3.
Khankari
,
S. K. G.
,
Biswas
,
M.
, and
Pramanick
,
A.
,
2013
, “
Thermodynamic Analysis
,”
ESMOC Conference
,
NIT Durgapur, India
,
Dec. 9–11
, pp.
69
71
.
4.
Vidal
,
A.
,
Best
,
R.
,
Rivero
,
R.
, and
Cervantes
,
J.
,
2006
, “
Analysis of a Combined Power and Refrigeration Cycle by the Exergy Method
,”
Energy
,
31
(
15
), pp.
3401
3414
.
5.
Vidhi
,
R.
,
Kuravi
,
S.
,
Yogi Goswami
,
D.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042002
.
6.
Micheli
,
D.
,
Pinamonti
,
P.
,
Reini
,
M.
, and
Taccani
,
R.
,
2013
, “
Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021601
.
7.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2014
, “
Design, Analysis and Optimization of a Micro-CHP System Based on Organic Rankine Cycle for Ultralow Grade Thermal Energy Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p. 011602.
8.
Jacobs
,
T. J.
,
2015
, “
Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042004
.
9.
Fronk
,
B. M.
, and
Zada
,
K. R.
,
2017
, “
Evaluation of Heat and Mass Transfer Models for Sizing Low-Temperature Kalina Cycle Microchannel Condensers
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022002
.
10.
Sarkar
,
J.
,
2018
, “
A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p. 052004.
11.
Mohamed
,
O.
,
Khalil
,
A.
, and
Wang
,
J.
,
2020
, “
Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review
,”
Energies
,
13
(
11
), p.
2935
12.
Khankari
,
G.
, and
Karmakar
,
S.
,
2016
, “
Power Generation From Coal Mill Rejection Using Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052004
.
13.
Hettiarachchi
,
H. D. M.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Ikegami
,
Y.
,
2007
, “
The Performance of the Kalina Cycle System 11(kcs-11) With Low-Temperature Heat Sources
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
243
247
.
14.
Astolfi
,
M.
,
Martelli
,
E.
, and
Pierobon
,
L.
,
2017
, “Thermodynamic and Technoeconomic Optimization of Organic Rankine Cycle Systems,”
Organic Rankine Cycle (ORC) Power Systems
,
E.
Macchi
and
M.
Astolfi
, eds.,
Woodhead Publishing
, pp.
173
249
.
15.
Papadakis
,
G.
,
Papantonis
,
D.
,
Kosmadakis
,
G.
,
Mousmoulis
,
G.
, and
Manolakos
,
D.
,
2017
, “
Development of Open-Drive Scroll Expander for an Organic Rankine Cycle (ORC) Engine and First Test Results
,”
Energy Procedia
,
129
, pp.
371
378
.
16.
Yamamoto
,
T.
,
Furuhata
,
T.
,
Arai
,
N.
, and
Mori
,
K.
,
2001
, “
Design and Testing of the Organic Rankine Cycle
,”
Energy
,
26
(
3
), pp.
239
251
.
17.
Vélez
,
F.
,
Segovia
,
J. J.
,
Martín
,
M. C.
,
Antolín
,
G.
,
Chejne
,
F.
, and
Quijano
,
A.
,
2012
, “
Comparative Study of Working Fluids for a Rankine Cycle Operating at Low Temperature
,”
Fuel Process. Technol.
,
103
, pp.
71
77
.
18.
Badr
,
O.
,
Probert
,
S. D.
, and
O’Callaghan
,
P. W.
,
1985
, “
Selecting a Working Fluid for a Rankine-Cycle Engine
,”
Appl. Energy
,
21
(
1
), pp.
1
42
.
19.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2009
, “
Process Integration of Organic Rankine Cycle
,”
Energy
,
34
(
10
), pp.
1674
1686
.
20.
Madhawa Hettiarachchi
,
H. D.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Ikegami
,
Y.
,
2007
, “
Optimum Design Criteria for an Organic Rankine Cycle Using Low-Temperature Geothermal Heat Sources
,”
Energy
,
32
(
9
), pp.
1698
1706
.
21.
Tartière
,
T.
, and
Astolfi
,
M.
,
2017
, “
A World Overview of the Organic Rankine Cycle Market
,”
Energy Procedia
,
129
, pp.
2
9
.
22.
Smolen
,
S.
,
2017
, “
Selected Theoretical and Practical Investigations and Optimization Issues of Organic Rankine Cycle Applied for Waste Heat Recovery
,”
Energy Procedia
,
129
, pp.
511
518
.
23.
Li
,
T.
,
Zhang
,
Z.
,
Lu
,
J.
,
Yang
,
J.
, and
Hu
,
Y.
,
2015
, “
Two-Stage Evaporation Strategy to Improve System Performance for Organic Rankine Cycle
,”
Appl. Energy
,
150
, pp.
323
334
.
24.
Kheiri
,
R.
,
Ghaebi
,
H.
,
Ebadollahi
,
M.
, and
Rostamzadeh
,
H.
,
2017
, “
Thermodynamic Modeling and Performance Analysis of Four New Integrated Organic Rankine Cycles (A Comparative Study)
,”
Appl. Therm. Eng.
,
122
, pp.
103
117
.
25.
Drescher
,
U.
, and
Brüggemann
,
D.
,
2007
, “
Fluid Selection for the Organic Rankine Cycle (ORC) in Biomass Power and Heat Plants
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
223
228
.
26.
Chacartegui
,
R.
,
Sánchez
,
D.
,
Muñoz
,
J. M.
, and
Sánchez
,
T.
,
2009
, “
Alternative ORC Bottoming Cycles for Combined Cycle Power Plants
,”
Appl. Energy
,
86
(
10
), pp.
2162
2170
.
27.
Venkatarathnam
,
G.
,
Mokashi
,
G.
, and
Murthy
,
S. S.
,
1996
, “
Occurrence of Pinch Points in Condensers and Evaporators for Zeotropic Refrigerant Mixtures
,”
Int. J. Refrig.
,
19
(
6
), pp.
361
368
.
28.
Li
,
Y. R.
,
Wang
,
J. N.
,
Du
,
M. T.
,
Wu
,
S. Y.
,
Liu
,
C.
, and
Xu
,
J. L.
,
2013
, “
Effect of Pinch Point Temperature Difference on Cost-Effective Performance of Organic Rankine Cycle
,”
Int. J. Energy Res.
,
37
(
2013
), pp.
1952
1919
.
29.
Vélez
,
F.
,
Chejne
,
F.
, and
Quijano
,
A.
,
2014
, “
Thermodynamic Analysis of R134a in an Organic Rankine Cycle for Power Generation From low Temperature Sources
,”
Dyna
,
81
(
185
), p.
153
.
30.
Babatunde
,
A. F.
, and
Snunday
,
O. O.
,
2018
, “
A Review of Working Fluids for Organic Rankine Cycle (ORC) Applications
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
413
(
1
).
31.
Saleh
,
B.
,
Koglbauer
,
G.
,
Wendland
,
M.
, and
Fischer
,
J.
,
2007
, “
Working Fluids for Low-Temperature Organic Rankine Cycles
,”
Energy
,
32
(
7
), pp.
1210
1221
.
32.
Tchanche
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
.
33.
Matsuda
,
K.
,
2013
, “
Low Heat Power Generation System
,”
Chem. Eng. Trans.
,
35
, pp.
223
228
.
34.
Pikra
,
G.
, and
Rohmah
,
N.
,
2018
, “
Working Fluid Selection for Electricity Production Using Organic Rankine Cycle With Heat Source Temperature of 100 °C
,”
Proc.—6th Int. Conf. Sustain. Energy Eng. Appl. ICSEEA 2018
,
Serpong, Indonesia
,
Nov. 1
, pp.
143
148
.
35.
Wang
,
M.
,
Wang
,
J.
,
Zhao
,
Y.
,
Zhao
,
P.
, and
Dai
,
Y.
,
2013
, “
Thermodynamic Analysis and Optimization of a Solar-Driven Regenerative Organic Rankine Cycle (ORC) Based on Flat-Plate Solar Collectors
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
816
825
.
36.
Schuster
,
A.
,
Karellas
,
S.
,
Kakaras
,
E.
, and
Spliethoff
,
H.
,
2009
, “
Energetic and Economic Investigation of Organic Rankine Cycle Applications
,”
Appl. Therm. Eng.
,
29
(
8–9
), pp.
1809
1817
.
37.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.
38.
Chen
,
H.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. K.
,
2011
, “
A Supercritical Rankine Cycle Using Zeotropic Mixture Working Fluids for the Conversion of low-Grade Heat Into Power
,”
Energy
,
36
(
1
), pp.
549
555
.
39.
Vaja
,
I.
, and
Gambarotta
,
A.
,
2010
, “
Internal Combustion Engine (ICE) Bottoming With Organic Rankine Cycles (ORCs)
,”
Energy
,
35
(
2
), pp.
1084
1093
.
40.
Wang
,
L.
,
Zhang
,
R.
, and
Jiang
,
Y.
,
2018
, “
Analysis
of
Waste Heat Recovery of Power Plant Thermal System Based on Organic Rankine Cycle
,”
2018 5th Int. Conf. Syst. Informatics, ICSAI 2018
,
Nanijing, China
,
Nov. 10–12
, pp.
144
148
.
41.
Hung TC
,
W. S.
, and
Shai
,
T. Y.
,
1997
, “
A Review of Organic Rankine Cycles (ORCs) for the Recovery of Low-Grade Waste Heat
,”
Energy
,
22
(
7
), pp.
661
667
.
42.
Zhang
,
X.
,
Cao
,
M.
,
Yang
,
X.
,
Guo
,
H.
, and
Wang
,
J.
,
2019
, “
Economic Analysis of Organic Rankine Cycle Using R123 and R245fa as Working Fluids and a Demonstration Project Report
,”
Appl. Sci.
,
9
(
2
), p.
288
.
43.
Tchanche
,
B. F.
,
Quoilin
,
S.
,
Declaye
,
S.
,
Papadakis
,
G.
, and
Lemort
,
V.
,
2010
, “
Economic Feasibility Study of a Small Scale Organic Rankine Cycle System in Waste Heat Recovery Application
,”
ASME 2010 10th Bienn. Conf. Eng. Syst. Des. Anal. Volume 1
,
xxxx
, pp.
249
256
.
44.
Gale
,
R.
,
2009
,
Electrostatic Precipitator
,
Springer Science Business Media LLC
.
45.
CEA
,
2012
, “Report on Minimisation of Water Requirement in Coal Based Thermal Power Stations,” Cent. Electr. Authority, New Delhi, India, pp.
1
52
. http://www.cea.nic.in/reports/others/thermal/tetd/min_of water_coal_power.pdf
47.
Noda
,
N.
, and
Makino
,
H.
,
2010
, “
Influence of Operating Temperature on Performance of Electrostatic Precipitator for Pulverized Coal Combustion Boiler
,”
Adv. Powder Technol.
,
21
(
4
), pp.
495
499
.
48.
Song
,
G.
,
Shen
,
L.
,
Xiao
,
J.
, and
Chen
,
L.
,
2013
, “
Estimation of Specific Enthalpy and Exergy of Biomass and Coal Ash
,”
Energy Sources A: Recovery Util. Environ. Eff.
,
35
(
9
), pp.
809
816
.
49.
Ganapathy
,
V.
,
1994
, Steam Plant Calculation Manual–Mechanical Engineering: A Series of Textbooks and Reference Books, 87, 2nd ed., Revised and Expanded,
Marcel Dekker
,
New York
.
50.
Horlock
,
J. H.
,
2015
, “
Combined Power Plants—Past, Present, and Future
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
608
616
.
51.
Liu
,
J.
,
Wang
,
J.
,
Ma
,
C.
, and
Wang
,
W.
,
2012
, “
Optimization of Cycle Parameter in Low-Medium Temperature Geothermal Power Generation
,”
CIESC J.
,
SI
, pp.
190
196
.
52.
Akbari
,
M.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Rosen
,
M. A.
,
2014
, “
Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy
,”
Sustain.
,
6
(
4
), pp.
1796
1820
.
53.
Khurana
,
A.
,
2018
, “Powering up the Transmission Sector,” http://www.thehindubusinessline.com, Accessed December 15, 2020.
You do not currently have access to this content.