Abstract

To make solar energy conversion more effective and enable effective complementary utilization of multiple energy sources, two types of solar-coal-fired complementary power (SCCP) systems, which use the supercritical CO2 Brayton cycle, are investigated and their layouts are improved. In addition, a thermodynamic performance analysis is carried out. The results show that, as the amount of work done by the solar energy module increases, the coal saving rate increases linearly and proportionally in both SCCP systems. Also, the supplementary electric power generated by the solar field increases. The two improved layouts increase the net efficiency of the SCCP systems significantly (SCCP1: from 43.60% to 47.65%, SCCP2: from 43.60% to 47.67%). More specifically, the net efficiency of the improved layout for SCCP2 increases faster than that for SCCP1 (with its improved layout), when the second split ratio (SR2) exceeds 0.031. When the net efficiency remains unchanged, the SR2 for SCCP2 improved layout has a wide range. Furthermore, both the operation performance and operating mode conversion of the basic system are studied for varying sunlight conditions. The simulation results are consistent with the expectations, which underlines the development potential of the system to a certain extent.

References

1.
Yarveicy
,
H.
,
Saghafi
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2019
, “
Decision Tree-Based Modeling of CO2 Equilibrium Absorption in Different Aqueous Solutions of Absorbents
,”
Environ. Prog. Sustain. Energy
,
38
(
s1
), pp.
S441
S448
.
2.
Yarveicy
,
H.
,
Ghiasi
,
M. M.
, and
Mohammadi
,
A. H.
,
2018
, “
Performance Evaluation of the Machine Learning Approaches in Modeling of CO2 Equilibrium Absorption in Piperazine Aqueous Solution
,”
J. Mol. Liq.
,
255
, pp.
375
383
.
3.
Yang
,
Y. P.
,
Yang
,
Z. P.
, and
Xu
,
G.
,
2013
, “
Situation and Prospect of Energy Consumption for China’s Thermal Power Generation
,”
Proc. CSEE
,
33
(
23
), pp.
1
11
(in Chinese).
4.
Feng
,
J. C.
,
2019
, “
Thermodynamic Analysis of Supercritical Carbon Dioxide Brayton Cycle Power System
,”
Energy Conserv.
,
38
(
8
), pp.
34
38
(in Chinese).
5.
Tumanovskii
,
A. G.
,
Shvarts
,
A. L.
,
Somova
,
E. V.
,
Verbovetskii
,
E. K.
,
Avrutskii
,
G. D.
,
Ermakova
,
S. V.
,
Kalugin
,
R. N.
, and
Lazarev
,
M. V.
,
2017
, “
Review of the Coal-Fired, Over-Supercritical and Ultra-Supercritical Steam Power Plants
,”
Therm. Eng.
,
64
(
2
), pp.
83
96
.
6.
Park
,
J. H.
,
Park
,
H. S.
,
Kwon
,
J. G.
,
Kim
,
T. H.
, and
Kim
,
M. H.
,
2018
, “
Optimization and Thermodynamic Analysis of Supercritical CO2 Brayton Recompression Cycle for Various Small Modular Reactors
,”
Energy
,
160
, pp.
520
535
.
7.
Wang
,
K.
,
He
,
Y. L.
, and
Zhu
,
H. H.
,
2017
, “
Integration Between Supercritical CO2 Brayton Cycles and Molten Salt Solar Power Towers: A Review and a Comprehensive Comparison of Different Cycle Layouts
,”
Appl. Energy
,
195
, pp.
819
836
.
8.
Wang
,
Y.
,
Xu
,
J.
,
Liu
,
Q.
,
Sun
,
E.
, and
Chen
,
C.
,
2019
, “
New Combined Supercritical Carbon Dioxide Cycles for Coal-Fired Power Plants
,”
Sustain. Cities Soc.
,
50
, pp.
101656
.
9.
Gao
,
F.
,
Sun
,
R.
, and
Liu
,
S. G.
,
2015
, “
Introduction of Supercritical CO2 Power Generation Technology
,”
J. Nav. Univ. Eng.
,
12
(
4
), pp.
92
96
(in Chinese).
10.
Wang
,
G.
,
Wang
,
C.
,
Chen
,
Z.
, and
Hu
,
P.
,
2020
, “
Design and Performance Evaluation of an Innovative Solar-Nuclear Complementary Power System Using the S-CO2 Brayton Cycle
,”
Energy
,
197
, p.
117282
.
11.
Gkountas
,
A. A.
,
Stamatelos
,
A. M.
, and
Kalfas
,
A. I.
,
2017
, “
Recuperators Investigation for High Temperature Supercritical Carbon Dioxide Power Generation Cycles
,”
Appl. Therm. Eng.
,
125
, pp.
1094
1102
.
12.
Coco-Enriquez
,
L.
,
Munoz-Anton
,
J.
, and
Martinez-Val
,
J. M.
,
2017
, “
New Text Comparison Between CO2 and Other Supercritical Working Fluids (Ethane, Xe, CH4 and N2) in Line-Focusing Solar Power Plants Coupled to Supercritical Brayton Power Cycles
,”
Int. J. Hydrogen Energy
,
42
(
28
), pp.
17611
17631
.
13.
Angelino
,
G.
,
1969
, “
Real Gas Effects in Carbon Dioxide Cycles
,”
Mech. Eng.
,
91
(
7
), p.
68
.
14.
Holcomb
,
G. R.
,
Carney
,
C.
, and
Dogan
,
O. N.
,
2016
, “
Oxidation of Alloys for Energy Applications in Supercritical CO2 and H2O
,”
Corros. Sci.
,
109
, pp.
22
35
.
15.
Lv
,
G.
,
Yang
,
J.
,
Shao
,
W.
, and
Wang
,
X.
,
2018
, “
Aerodynamic Design Optimization of Radial-Inflow Turbine in Supercritical CO2 Cycles Using a One-Dimensional Model
,”
Energy Convers. Manage.
,
165
, pp.
827
839
.
16.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.
17.
Hu
,
L.
,
Chen
,
D.
,
Huang
,
Y.
,
Li
,
L.
,
Cao
,
Y.
,
Yuan
,
D.
,
Wang
,
J.
, and
Pan
,
L.
,
2015
, “
Investigation on the Performance of the Supercritical Brayton Cycle With CO2-Based Binary Mixture as Working Fluid for an Energy Transportation System of a Nuclear Reactor
,”
Energy
,
89
, pp.
874
886
.
18.
Floyd
,
J.
,
Alpy
,
N.
,
Moisseytsev
,
A.
,
Haubensack
,
D.
,
Rodriguez
,
G.
,
Sienicki
,
J.
, and
Avakian
,
G.
,
2013
, “
A Numerical Investigation of the sCO2 Recompression Cycle Off-Design Behavior, Coupled to a Sodium Cooled Fast Reactor, for Seasonal Variation in the Heat Sink Temperature
,”
Nucl. Eng. Des.
,
260
, pp.
78
92
.
19.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1362
1371
.
20.
Moullec
,
Y. L.
,
2013
, “
Conceptual Study of a High Efficiency Coal-Fired Power Plant With CO2 Capture Using a Supercritical CO2 Brayton Cycle
,”
Energy
,
49
, pp.
32
46
.
21.
Mecheri
,
M.
, and
Moullec
,
Y. L.
,
2016
, “
Supercritical CO2 Brayton Cycles for Coal-Fired Power Plants
,”
Energy
,
103
, pp.
758
771
.
22.
Cho
,
S. K.
,
Kim
,
M.
,
Baik
,
S.
,
Ahn
,
Y.
, and
Lee
,
J. I.
,
2015
, “
Investigation of the Bottoming Cycle for High Efficiency Combined Cycle Gas Turbine System With Supercritical Carbon Dioxide Power Cycle
,”
Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Canada
.
23.
Zhang
,
Y.
,
Li
,
H.
,
Han
,
W.
,
Bai
,
W.
,
Yang
,
Y.
,
Yao
,
M.
, and
Wang
,
Y.
,
2018
, “
Improved Design of Supercritical CO2 Brayton Cycle for Coal-Fired Power Plant
,”
Energy
,
155
, pp.
1
14
.
24.
Sun
,
E.
,
Xu
,
J.
,
Li
,
M.
,
Liu
,
G.
, and
Zhu
,
B.
,
2018
, “
Connected-Top-Bottom-Cycle to Cascade Utilize Flue Gas Heat for Supercritical Carbon Dioxide Coal Fired Power Plant
,”
Energy Convers. Manage.
,
172
, pp.
138
154
.
25.
Sun
,
E.
,
Hu
,
H.
,
Li
,
H.
,
Liu
,
C.
, and
Xu
,
J.
,
2019
, “
How to Construct a Combined S-CO2 Cycle for Coal Fired Power Plant?
,”
Entropy
,
21
(
1
), p.
19
.
26.
Sun
,
E.
,
Xu
,
J.
,
Hu
,
H.
,
Yan
,
C.
, and
Liu
,
C.
,
2019
, “
Single-Reheating or Double-Reheating, Which Is Better for S-CO2 Coal Fired Power Generation System?
,”
J. Therm. Sci.
,
28
(
3
), pp.
431
441
.
27.
Milani
,
D.
,
Luu
,
M. T.
,
McNaughton
,
R.
, and
Abbas
,
A.
,
2017
, “
A Comparative Study of Solar Heliostat Assisted Supercritical CO2 Recompression Brayton Cycles: Dynamic Modeling and Control Strategies
,”
J. Supercrit. Fluids
,
120
(
1
), pp.
113
124
.
28.
Wang
,
X.
,
Liu
,
Q.
,
Bai
,
Z.
,
Lei
,
J.
, and
Jin
,
H.
,
2017
, “
Thermodynamic Analysis of the Cascaded Supercritical CO2 Cycle Integrated With Solar and Biomass Energy
,”
Energy Procedia
,
105
, pp.
445
452
.
29.
Atif
,
M.
, and
Al-Sulaiman
,
F. A.
,
2018
, “
Energy and Exergy Analyses of Recompression Brayton Cycles Integrated With a Solar Power Tower Through a Two-Tank Thermal Storage System
,”
J. Energy Eng.
,
144
(
4
), p.
040180364
.
30.
Curtis
,
D. J.
, and
Forsberg
,
C. W.
,
2016
, “
A Nuclear Renewable Oil Shale System for Economic Dispatchable Low-Carbon Electricity and Liquid Fuels
,”
Nucl. Technol.
,
195
(
3
), pp.
335
352
.
31.
Chen
,
J.
,
Garcia
,
H. E.
,
Kim
,
J. S.
, and
Bragg-Sitton
,
S. M.
,
2016
, “
Operations Optimization of Nuclear Hybrid Energy Systems
,”
Nucl. Technol.
,
195
(
2
), pp.
143
156
.
32.
Yan
,
H.
,
Li
,
X.
,
Liu
,
M.
,
Chong
,
D.
, and
Yan
,
J.
,
2020
, “
Performance Analysis of a Solar-Aided Coal-Fired Power Plant in Off-Design Working Conditions and Dynamic Process
,”
Energy Convers. Manage.
,
220
, p.
113059
.
33.
Liu
,
H.
,
Zhai
,
R.
,
Patchigolla
,
K.
,
Turner
,
P.
, and
Yang
,
Y.
,
2020
, “
Analysis of Integration Method in Multi-Heat-Source Power Generation Systems Based on Finite-Time Thermodynamics
,”
Energy Convers. Manage.
,
220
, p.
113069
.
34.
Sohal
,
M. S.
,
Ebner
,
M. A.
, and
Sabharwall
,
P.
,
2013
,
Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties
,
Idaho National Laboratory
,
Idaho
.
35.
Liu
,
M.
,
Zhang
,
X.
,
Yang
,
K.
,
Ma
,
Y.
, and
Yan
,
J.
,
2019
, “
Optimization and Comparison on Supercritical CO2 Power Cycles Integrated Within Coal-Fired Power Plants Considering the Hot and Cold End Characteristics
,”
Energy Convers. Manage.
,
195
, pp.
854
865
.
36.
Carstens
,
N. A.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “Control System Strategies and Dynamic Response for Supercritical CO2 Power Conversion Cycles,” Center for Advanced Nuclear Energy Systems MIT Nuclear Engineering Department, MIT-GFR-038.
37.
Bai
,
W.
,
Zhang
,
Y.
,
Yang
,
Y.
,
Li
,
H.
, and
Yao
,
M.
,
2018
, “
300 MW Boiler Design Study for Coal-Fired Supercritical CO2 Brayton Cycle
,”
Appl. Therm. Eng.
,
135
, pp.
66
73
.
38.
Williams
,
A. N.
,
Galbreth
,
G. G.
, and
Sanders
,
J.
,
2018
, “
Accurate Determination of Density, Surface Tension, and Vessel Depth Using a Triple Bubbler System
,”
J. Ind. Eng. Chem.
,
63
, pp.
149
156
.
39.
Li
,
C. Y.
,
Jia
,
X. Y.
,
Li
,
H. Y.
,
Deng
,
L.
, and
Shi
,
X.
,
2011
, “
Digital Image Processing Technology Applied in Level Measurement and Control System
,”
Procedia Eng.
,
24
, pp.
226
231
.
40.
Becker
,
K. F.
, and
Anderson
,
M. H.
,
2020
, “
Optical Fiber-Based Level Sensor for High Temperature Applications
,”
IEEE Sens. J.
,
20
(
16
), pp.
9187
9195
.
You do not currently have access to this content.