Abstract

The performance, combustion, and emission parameters of a thermal barrier-coated (TBC) compression ignition (CI) engine were experimentally examined using biohythane (biohydrogen + biomethane) as leading fuel and diesel as secondary fuel. The mixture of supplied fuel was blended with 85–95% biomethane and 5–15% biohydrogen, mixed with the inlet air, and supplied through the intake manifold for both coated and uncoated conditions. Yttria-stabilized zirconia with a thickness of 0.4 mm was used as the top coat on the valves and piston crown over 0.1 mm thickness NiCrAlY bond coat using the plasma spray method. Baseline data were obtained by running the engine with conventional diesel fuel, and the same was compared with dual-fuel operation at constant engine speed and variable loading conditions. Results indicated that 15% biohydrogen enrichment with TBC operation improved the engine brake thermal efficiency (BTE) by 6% compared to diesel-only mode. Further, peak cylinder pressure and heat release rate were improved up to 16.5–20% with TBC and biohythane under dual-fuel mode compared to diesel-only mode. Moreover, the emission characteristics such as hydrocarbon (HC), carbon monoxide (CO), and smoke were reduced up to 16.2, 29.1, and 62.6%, respectively, with TBC and biohythane compared to the base diesel operation owing to low carbon concentration and improved combustion characteristics.

References

1.
Yun
,
Y. M.
,
Lee
,
M. K.
,
Im
,
S. W.
,
Marone
,
A.
,
Trably
,
E.
,
Shin
,
S. R.
,
Kim
,
M. G.
,
Cho
,
S. K.
, and
Kim
,
D. H.
,
2018
, “
Biohydrogen Production From Food Waste: Current Status, Limitations, and Future Perspectives
,”
Bioresour. Technol.
,
248
(
Part A
), pp.
79
87
.
2.
Ren
,
H. Y.
,
Liu
,
B. F.
,
Kong
,
F.
,
Zhao
,
L.
,
Ma
,
J.
, and
Ren
,
N. Q.
,
2018
, “
Favorable Energy Conversion Efficiency of Coupling Dark Fermentation and Microalgae Production From Food Wastes
,”
Energy Convers. Manage.
,
166
(
12
), pp.
156
162
.
3.
Verma
,
S.
,
Kumar
,
K.
,
Das
,
L. M.
, and
Kaushik
,
S. C.
,
2021
, “
Effect of Hydrogen Enrichment Strategy on Performance and Emission Features of Biodiesel-Biogas Dual Fuel Engine Using Simulation and Experimental Analyses
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092301
.
4.
Franco
,
R. T.
,
Buffière
,
P.
, and
Bayard
,
R.
,
2018
, “
Co-ensiling of Cattle Manure Before Biogas Production: Effects of Fermentation Stimulants and Inhibitors on Biomass and Methane Preservation
,”
Renewable Energy
,
121
(
8
), pp.
315
323
.
5.
Ormaechea
,
P.
,
Castrillón
,
L.
,
Suárez-Peña
,
B.
,
Megido
,
L.
,
Fernández-Nava
,
Y.
,
Negral
,
L.
,
Marañón
,
E.
, and
Rodríguez-Iglesias
,
J.
,
2018
, “
Enhancement of Biogas Production From Cattle Manure Pretreated and/or co-Digested at Pilot-Plant Scale. Characterization by SEM
,”
Renewable Energy
,
126
(
13
), pp.
897
904
.
6.
Sanli
,
A.
,
Yılmaz
,
I. T.
, and
Gümüş
,
M.
,
2020
, “
Assessment of Combustion and Exhaust Emissions in a Common-Rail Diesel Engine Fueled With Methane and Hydrogen/Methane Mixtures Under Different Compression Ratio
,”
Int. J. Hydrogen Energy
,
45
(
4
), pp.
3263
3283
.
7.
Bouguessa
,
R.
,
Tarabet
,
L.
,
Loubar
,
K.
,
Belmrabet
,
T.
, and
Tazerout
,
M.
,
2020
, “
Experimental Investigation on Biogas Enrichment With Hydrogen for Improving the Combustion in Diesel Engine Operating Under Dual Fuel Mode
,”
Int. J. Hydrogen Energy
,
45
(
15
), pp.
9052
9063
.
8.
Khatri
,
N.
, and
Khatri
,
K. K.
,
2020
, “
Hydrogen Enrichment on Diesel Engine With Biogas in Dual Fuel Mode
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7128
7140
.
9.
Cheng
,
Q.
,
Kaario
,
O.
,
Ahmad
,
Z.
,
Vuorinen
,
V.
, and
Larmi
,
M.
,
2021
, “
Effect of Pilot Fuel Properties on Engine Performance and Combustion Stability in a Tri-Fuel Engine Powered by Premixed Methane-Hydrogen and Diesel Pilot
,”
Int. J. Hydrogen Energy
,
46
(
75
), pp.
37469
37486
.
10.
Cheng
,
Q.
,
Ahmad
,
Z.
,
Kaario
,
O.
,
Vuorinen
,
V.
, and
Larmi
,
M.
,
2021
, “
Experimental Study on Tri-Fuel Combustion Using Premixed Methane-Hydrogen Mixtures Ignited by a Diesel Pilot
,”
Int. J. Hydrogen Energy
,
46
(
40
), pp.
21182
21197
.
11.
Bui
,
V. G.
,
Bui
,
T. M. T.
,
Hoang
,
A. T.
,
Nižetić
,
S.
,
Nguyen Thi
,
T. X.
, and
Vo
,
A. V.
,
2021
, “
Hydrogen-Enriched Biogas Premixed Charge Combustion and Emissions in Direct Injection and Indirect Injection Diesel Dual Fueled Engines: A Comparative Study
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120907
.
12.
Mansor
,
M. R. A.
,
Mohamad
,
T. I.
, and
Sabah
,
O.
,
2021
, “
Numerical Investigation on Combustion and Emissions in a Direct Injection Compression Ignition Engine Fuelled With Various Hydrogen–Methane–Diesel Blends at Different Intake Air Temperatures
,”
Energy Reports
,
7
(
Supplement 5
), pp.
403
421
.
13.
Castro
,
N.
,
Toledo
,
M.
, and
Amador
,
G.
,
2019
, “
An Experimental Investigation of the Performance and Emissions of a Hydrogen-Diesel Dual Fuel Compression Ignition Internal Combustion Engine
,”
Appl. Therm. Eng.
,
156
(
11
), pp.
660
667
.
14.
Sandalcı
,
T.
,
Işın
,
Ö
,
Galata
,
S.
,
Karagöz
,
Y.
, and
Güler
,
İ
,
2019
, “
Effect of Hythane Enrichment on Performance, Emission and Combustion Characteristics of an ci Engine
,”
Int. J. Hydrogen Energy
,
44
(
5
), pp.
3208
3220
.
15.
Zareei
,
J.
,
Rohani
,
A.
, and
Mahmood
,
W. M. F. W.
,
2018
, “
Simulation of a Hydrogen/Natural Gas Engine and Modelling of Engine Operating Parameters
,”
Int. J. Hydrogen Energy
,
43
(
25
), pp.
11639
11651
.
16.
Mansor
,
M. R. A.
,
Abbood
,
M. M.
, and
Mohamad
,
T. I.
,
2017
, “
The Influence of Varying Hydrogen-Methane-Diesel Mixture Ratio on the Combustion Characteristics and Emissions of a Direct Injection Diesel Engine
,”
Fuel
,
190
(
4
), pp.
281
291
.
17.
Hernández
,
J. J.
,
Lapuerta
,
M.
, and
Barba
,
J.
,
2016
, “
Separate Effect of H2, CH4 and CO on Diesel Engine Performance and Emissions Under Partial Diesel Fuel Replacement
,”
Fuel
,
165
(
3
), pp.
173
184
.
18.
Kamo
,
R.
, and
Bryzik
,
W.
,
1979
, “
Ceramics in Heat Engines
,” SAE Technical Paper, SAE International, USA, Report No. 790645.
19.
Bruns
,
L.
,
Bryzik
,
W.
, and
Kamo
,
R.
,
1989
, “
Performance Assessment of US. Army Truck With Adiabatic Diesel Engine
,” SAE Technical Paper, SAE International, USA, Report No. 890142.
20.
Hejwowski
,
T.
,
2010
, “
Comparative Study of Thermal Barrier Coatings for Internal Combustion Engine
,”
Vacuum
,
85
(
5
), pp.
610
616
.
21.
Kamo
,
R.
,
Mavinahally
,
N. S.
,
Kamo
,
L.
,
Bryzik
,
W.
, and
Schwartz
,
E. E.
,
1999
, “
Injection Characteristics That Improve Performance of Ceramic Coated Diesel Engines
,”
SAE Trans.
,
108
(
Section 3
), pp.
1476
1482
.
22.
Oni
,
B. A.
,
Sanni
,
S. E.
,
Ibegbu
,
A. J.
, and
Aduojo
,
A. A.
,
2021
, “
Experimental Optimization of Engine Performance of a Dual-Fuel Compression-Ignition Engine Operating on Hydrogen-Compressed Natural Gas and Moringa Biodiesel
,”
Energy Reports
,
7
(
Supplement 6
), pp.
607
619
.
23.
Deheri
,
C.
, and
Acharya
,
S. K.
,
2020
, “
An Experimental Approach to Produce Hydrogen and Methane From Food Waste Using Catalyst
,”
Int. J. Hydrogen Energy
,
45
(
35
), pp.
17250
17259
.
24.
Deheri
,
C.
, and
Acharya
,
S. K.
,
2021
, “
Effect of Calcium Peroxide and Sodium Hydroxide on Hydrogen and Methane Generation During the Co-Digestion of Food Waste and Cow Dung
,”
J. Cleaner Prod.
,
279
(
2
), p.
123901
.
25.
Deheri
,
C.
, and
Acharya
,
S. K.
,
2022
, “
Purified Biohythane (Biohydrogen+ Biomethane) Production From Food Waste Using CaO2+ CaCO3 and NaOH as Additives
,”
Int. J. Hydrogen Energy
,
47
(
5
), pp.
2862
2873
.
26.
Devaraj
,
J.
,
Robinson
,
Y.
, and
Ganapathi
,
P.
,
2015
, “
Experimental Investigation of Performance, Emission and Combustion Characteristics of Waste Plastic Pyrolysis Oil Blended With Diethyl Ether Used as Fuel for Diesel Engine
,”
Energy
,
85
(
7
), pp.
304
309
.
27.
Jena
,
S. P.
, and
Acharya
,
S. K.
,
2022
, “
Thermodynamic Analysis of a Thermal Barrier-Coated CI Engine in a Dual-Fuel Mode Using Biogas
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
1793
1801
.
28.
Yilmaz
,
I. T.
, and
Gumus
,
M.
,
2017
, “
Investigation of the Effect of Biogas on Combustion and Emissions of TBC Diesel Engine
,”
Fuel
,
188
(
2
), pp.
69
78
.
29.
Verma
,
S.
,
Das
,
L. M.
,
Kaushik
,
S. C.
, and
Tyagi
,
S. K.
,
2018
, “
An Experimental Investigation of Exergetic Performance and Emission Characteristics of Hydrogen Supplemented Biogas-Diesel Dual Fuel Engine
,”
Int. J. Hydrogen Energy
,
43
(
4
), pp.
2452
2468
.
30.
Karthic
,
S. V.
,
Pradeep
,
P.
, and
Kumar
,
S. V.
,
2020
, “
Assessment of Hydrogen-Based Dual Fuel Engine on Extending Knock Limiting Combustion
,”
Fuel
,
260
(
2
), p.
116342
.
31.
Talibi
,
M.
,
Hellier
,
P.
, and
Ladommatos
,
N.
,
2017
, “
Combustion and Exhaust Emission Characteristics, and In-Cylinder Gas Composition, of Hydrogen Enriched Biogas Mixtures in a Diesel Engine
,”
Energy
,
124
(
7
), pp.
397
412
.
32.
Tarabet
,
L.
,
Lounici
,
M. S.
,
Loubar
,
K.
,
Khiari
,
K.
,
Bouguessa
,
R.
, and
Tazerout
,
M.
,
2018
, “
Hydrogen Supplemented Natural Gas Effect on a DI Diesel Engine Operating Under Dual Fuel Mode With a Biodiesel Pilot Fuel
,”
Int. J. Hydrogen Energy
,
43
(
11
), pp.
5961
5971
.
33.
Zhou
,
J. H.
,
Cheung
,
C. S.
, and
Leung
,
C. W.
,
2014
, “
Combustion, Performance and Emissions of a Diesel Engine With H2, CH4 and H2–CH4 Addition
,”
Int. J. Hydrogen Energy
,
39
(
9
), pp.
4611
4621
.
34.
Karagöz
,
Y.
,
Güler
,
İ
,
Sandalcı
,
T.
,
Yüksek
,
L.
,
Dalkılıç
,
A. S.
, and
Wongwises
,
S.
,
2016
, “
Effects of Hydrogen and Methane Addition on Combustion Characteristics, Emissions, and Performance of a CI Engine
,”
Int. J. Hydrogen Energy
,
41
(
2
), pp.
1313
1325
.
35.
Tarabet
,
L.
,
Loubar
,
K.
,
Lounici
,
M. S.
,
Khiari
,
K.
,
Belmrabet
,
T.
, and
Tazerout
,
M.
,
2014
, “
Experimental Investigation of DI Diesel Engine Operating With Eucalyptus Biodiesel/Natural Gas Under Dual Fuel Mode
,”
Fuel
,
133
(
20
), pp.
129
138
.
36.
Wang
,
J.
,
Huang
,
Z.
,
Fang
,
Y.
,
Liu
,
B.
,
Zeng
,
K.
,
Miao
,
H.
, and
Jiang
,
D.
,
2007
, “
Combustion Behaviors of a Direct-Injection Engine Operating on Various Fractions of Natural Gas–Hydrogen Blends
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3555
3564
.
37.
Abu-Jrai
,
A. M.
,
Ala'a
,
H.
, and
Hasan
,
A. O.
,
2017
, “
Combustion, Performance, and Selective Catalytic Reduction of NOx for a Diesel Engine Operated With Combined Tri Fuel (H2, CH4, and Conventional Diesel)
,”
Energy
,
119
(
2
), pp.
901
910
.
You do not currently have access to this content.