Abstract

The aim of this work is to analyze a superfluid Stirling cryocooler using superfluid helium as the working medium. The idea behind this kind of cryocooler is to utilize two conjoined Stirling coolers with a phase difference as to achieve heat transfer between them and thus negate the need for a regenerator. The two cycles exchange heat at an exchanger, referred to as a recuperator, placed where the regenerator would be typically. This apparatus is simulated through a 1D model where the full equations of state for the superfluid are being used, opposed to the common simplifications when modeling superfluids. This model provides the expected results for the initial case of 180 deg phase difference between the engines, and then finds the optimal phase difference for the best coefficient of performance. A 3D model is designed in the ansys fluent software, and the superfluid data are used in the computational fluid dynamics calculation. Running different cases, the optimal phase difference for the 3D case was found and compared to the 1D model. Additionally, the cryocooler was simulated to work in different frequencies for finding its optimal speed and deriving the cooling power to frequency plot.

References

1.
Domenikos
,
G.-R.
,
Bitsikas
,
P.
, and
Rogdakis
,
E.
,
2019
, “
Computational Analysis of Cryogenic Stirling Refrigerator
,”
ASME 2019 International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 11–14
.
2.
Domenikos
,
G.-R.
,
Bitsikas
,
P.
, and
Rogdakis
,
E.
,
2019
, “
Thermodynamic Modelling of Superfluid Stirling Cryocoolers
,”
ASME International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 11–14
, Vol. 59438, American Society of Mechanical Engineers, p. V006T06A069.
3.
Domenikos
,
G. R.
,
Rogdakis
,
E.
, and
Koronaki
,
I.
,
2021
, “
Thermodynamic Behavior and Equation of State for Cryogenic Helium 3-4 Mixtures
,”
ASME International Mechanical Engineering Congress and Exposition
,
Virtual Conference
,
Nov. 1–4
, Vol. 85642, American Society of Mechanical Engineers, p. V08BT08A010.
4.
Chaudhry
,
G.
, and
Brisson
,
J. G.
,
2009
, “
Thermodynamic Properties of Liquid 3He–4He Mixtures Between 0.15 K and 1.8 K
,”
J. Low. Temp. Phys.
,
155
(
5
), pp.
235
289
.
5.
Brisson
,
J. G.
, and
Patel
,
A. B.
,
1999
, “
A Simple Model for a Superfluid Stirling Refrigerator at High Operating Temperature
,”
J. Low. Temp. Phys.
,
116
(
5
), pp.
443
475
.
6.
Patel
,
A. B.
,
1999
, “
The Development of High Cooling Power and Low Ultimate Temperature Superfluid Stirling Refrigerators
,” Doctoral Dissertation,
MIT
,
Cambridge, MA
.
7.
Urieli
,
I.
, and
Berchowitz
,
D. M.
,
1984
, “Stirling Cycle Engine Analysis”.
8.
Brooks
,
J. S.
, and
Donnelly
,
R. J.
,
1977
, “
The Calculated Thermodynamic Properties of Superfluid Helium-4
,”
J. Phys. Chem. Ref. Data.
,
6
(
1
), pp.
51
104
.
9.
Huang
,
Y.
,
Chen
,
G.
,
Wang
,
S.
, and
Arp
,
V.
,
2006
, “
Equation of State for Normal Liquid Helium-3 From 0.1 to 3.3157 K
,”
J. Low. Temp. Phys.
,
143
(
1
), pp.
1
29
.
10.
Domenikos
,
G. R.
,
Rogdakis
,
E.
, and
Koronaki
,
I.
,
2021
, “
Continuous Equation of State and Thermodynamic Maps for Cryogenic Helium 4
,”
ASME International Mechanical Engineering Congress and Exposition
,
Virtual Conference
,
Nov. 1–4
, Vol. 85642, American Society of Mechanical Engineers, p. V08BT08A009.
11.
Kuper
,
C. G.
,
1958
, “
On the Properties of Helium Films and Superleaks
,”
Physica
,
24
(
6–10
), pp.
1009
1017
.
12.
Van Sciver
,
S. W.
,
2012
,
Helium Cryogenics
,
Springer New York
,
New York, NY
.
13.
Donnelly
,
R. J.
,
1988
, “
Superfluid Turbulence
,”
Sci. Am.
,
259
(
5
), pp.
100
109
.
14.
Cochran
,
J. F.
,
Mapother
,
D. E.
, and
Mould
,
R. E.
,
1956
, “
Superconducting Transition in Aluminum
,”
Phys. Rev.
,
103
, pp.
1657
1669
.
15.
Geballe
,
T. H.
,
Matthias
,
B. T.
,
Corenzwit
,
E.
, and
Hull
,
G. W.
,
1962
, “
Superconductivity in Molybdenum
,”
Phys. Rev. Lett.
,
8
, pp.
313
313
.
16.
Lounasmaa
,
O. V.
,
1979
, “
Dilution Refrigeration
,”
J. Phys. E: Sci. Instrum.
,
12
(
8
), p.
668
.
17.
Wikus
,
P.
, and
Niinikoski
,
T. O.
,
2010
, “
Theoretical Models for the Cooling Power and Base Temperature of Dilution Refrigerators
,”
J. Low. Temp. Phys.
,
158
(
5
), pp.
901
921
.
18.
Domenikos
,
G. R.
,
Rogdakis
,
E.
, and
Koronaki
,
I.
,
2021
, “
Studying the Superfluid Transformation in Helium 4 Through the Partition Function and Entropic Behavior
,”
ASME International Mechanical Engineering Congress and Exposition
,
Virtual Conference
,
Nov. 1–4
, Vol. 85642, American Society of Mechanical Engineers, p. V08BT08A008.
19.
Domenikos
,
G.-R.
,
Rogdakis
,
E.
, and
Koronaki
,
I.
,
2022
, “
Thermodynamic Correlation of the Entropy of Bose-Einstein Condensation Transition to the Lambda Points of Superfluids
,”
ASME J. Energy. Resour. Technol.
,
144
(
12
), p.
122101
.
20.
Rondeaux
,
F.
,
Bredy
,
Ph.
, and
Rey
,
J. M.
,
2002
, “
Thermal Conductivity Measurements of Epoxy Systems at Low Temperature
,”
AIP Conf. Proc.
,
614
(
1
), pp.
197
203
.
21.
Barucci
,
M.
,
Gottardi
,
E.
,
Peroni
,
I.
, and
Ventura
,
G.
,
2000
, “
Low Temperature Thermal Conductivity of Kapton and Upilex
,”
Cryogenics
,
40
(
2
), pp.
145
147
.
22.
McCarty
,
R. D.
,
1972
,
Thermophysical Properties of Helium-4 From 2 to 1500 K With Pressures to 1000 Atmospheres
, Vol.
Vol. 631
,
US Government Printing Office
,
New York
.
23.
McCarty
,
R. D.
,
1981
,
The Thermodynamic Properties of Helium II From OK to the Lambda Transitions
, Vol. Vol. 1029,
US Department of Commerce, National Bureau of Standards
,
Boulder, CO
.
24.
Arp
,
V. D.
, and
McCarty
,
R. D.
,
1998
,
Thermophysical Properties of Helium-4 From 0.8 to 1599K With Pressures to 2000MPa
,
National Institute of Standards and Technology
,
Boulder, CO
.
25.
Metcalfe
,
G.
, and
Behringer
,
R. P.
,
1996
, “
Convection in 3He–Superfluid-4He Mixtures. Part 1. A Boussinesq Analogue
,”
J. Fluid. Mech.
,
307
, pp.
269
296
.
26.
Rogdakis
,
E.
,
Bitsikas
,
P.
,
Dogkas
,
G.
, and
Antonakos
,
G.
,
2019
, “
Three-Dimensional CFD Study of a β-Type Stirling Engine
,”
Ther. Sci. Eng. Prog.
,
11
, pp.
302
316
.
27.
Brisson
,
J. G.
, and
Swift
,
G. W.
,
1994
, “A Recuperative Superfluid Stirling Refrigerator,”
Adv. Cryog. Eng.
,
Springer US
,
Boston, MA
, pp.
1393
1397
.
28.
Watanabe
,
A.
,
Swift
,
G. W.
, and
Brisson
,
J. G.
,
1996
, “Measurements With a Recuperative Superfluid Stirling Refrigerator,”
Adv. Cryog. Eng. Part A
,
Springer US
,
Boston, MA
, pp.
1527
1533
.
You do not currently have access to this content.