Abstract

Allam cycle is known as an oxy-fuel gas-powered power cycle. A modified Allam cycle co-fired by biomass and natural gas is proposed in this paper, evaluated, and optimized. Detailed thermodynamic, economic, and exergoeconomic analyses are reported for the co-fired cycle. And parametric analysis and a tri-optimization are carried out to investigate the effects of cycle variables on the system performance. The results show that as the co-firing ratio increases from 20% to 100%, the exergetic efficiency and the levelized cost of electricity vary from 44.3% to 36.8% and 123.2 $/MWh to 164.4 $/MWh, respectively, while the specific negative CO2 emission increases from 44.5 kg/MWh to 251 kg/MWh. The results of tri-objective optimization reveal that the highest exergetic efficiency of 46.85%, lowest levelized cost of electricity of 99.57 $/MWh, and highest specific negative CO2 emission of 323.6 kg/MWh are obtained respectively at different optimal operation conditions.

References

1.
Ahmad
,
A. A.
,
Zawawi
,
N. A.
,
Kasim
,
F. H.
,
Inayat
,
A.
, and
Khasri
,
A.
,
2016
, “
Assessing the Gasification Performance of Biomass: A Review on Biomass Gasification Process Conditions, Optimization and Economic Evaluation
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1333
1347
.
2.
Matas Güell
,
B.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2013
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
3.
Fragiacomo
,
P.
,
De Lorenzo
,
G.
, and
Corigliano
,
O.
,
2018
, “
Performance Analysis of a Solid Oxide Fuel Cell-Gasifier Integrated System in Co-Trigenerative Arrangement
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092001
.
4.
Schicker
,
P. C.
,
Spayde
,
D.
, and
Cho
,
H.
,
2022
, “
Design and Feasibility Study of Biomass-Driven Combined Heat and Power Systems for Rural Communities
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070909
.
5.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2017
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012003
.
6.
Cumicheo
,
C.
,
Mac Dowell
,
N.
, and
Shah
,
N.
,
2019
, “
Natural Gas and BECCS: A Comparative Analysis of Alternative Configurations for Negative Emissions Power Generation
,”
Int. J. Greenh. Gas Control
,
90
, p.
102798
.
7.
Wang
,
J.
,
Mao
,
T.
,
Sui
,
J.
, and
Jin
,
H.
,
2015
, “
Modeling and Performance Analysis of CCHP (Combined Cooling, Heating and Power) System Based on co-Firing of Natural Gas and Biomass Gasification Gas
,”
Energy
,
93
, pp.
801
815
.
8.
Khorshidi
,
Z.
,
Florin
,
N. H.
,
Ho
,
M. T.
, and
Wiley
,
D. E.
,
2016
, “
Techno-Economic Evaluation of Co-Firing Biomass Gas With Natural Gas in Existing NGCC Plants With and Without CO2 Capture
,”
Int. J. Greenh. Gas Control
,
49
, pp.
343
363
.
9.
Agbor
,
E.
,
Oyedun
,
A. O.
,
Zhang
,
X.
, and
Kumar
,
A.
,
2016
, “
Integrated Techno-Economic and Environmental Assessments of Sixty Scenarios for Co-Firing Biomass With Coal and Natural Gas
,”
Appl. Energy
,
169
, pp.
433
449
.
10.
Moharamian
,
A.
,
Soltani
,
S.
,
Rosen
,
M. A.
,
Mahmoudi
,
S. M. S.
, and
Morosuk
,
T.
,
2017
, “
A Comparative Thermoeconomic Evaluation of Three Biomass and Biomass-Natural Gas Fired Combined Cycles Using Organic Rankine Cycles
,”
J. Cleaner Prod.
,
161
, pp.
524
544
.
11.
Zhang
,
X.
,
Zeng
,
R.
,
Mu
,
K.
,
Liu
,
X.
,
Sun
,
X.
, and
Li
,
H.
,
2019
, “
Exergetic and Exergoeconomic Evaluation of Co-Firing Biomass Gas With Natural Gas in CCHP System Integrated With Ground Source Heat Pump
,”
Energy Convers. Manage.
,
180
, pp.
622
640
.
12.
Ghiami
,
S.
,
Khallaghi
,
N.
, and
Borhani
,
T. N.
,
2021
, “
Techno-Economic and Environmental Assessment of Staged Oxy-Co-Firing of Biomass-Derived Syngas and Natural Gas
,”
Energy Convers. Manage.
,
243
, p.
114410
.
13.
Mancuso
,
L.
,
Ferrari
,
N.
,
Chiesa
,
P.
,
Martelli
,
E.
, and
Romano
,
M.
,
2015
, “Oxy-Combustion Turbine Power Plants,” IEAGHG. https://ieaghg.org/docs/General_Docs/Reports/2015-05.pdf
14.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Proceedings of the 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016
,
Lausanne, Switzerland
,
Nov. 14–18
, Elsevier Ltd., pp.
5948
5966
.
15.
Scaccabarozzi
,
R.
,
Gatti
,
M.
, and
Martelli
,
E.
,
2016
, “
Thermodynamic Analysis and Numerical Optimization of the NET Power Oxy-Combustion Cycle
,”
Appl. Energy
,
178
, pp.
505
526
.
16.
Penkuhn
,
M.
, and
Tsatsaronis
,
G.
,
2016
, “
Exergy Analysis of the Allam Cycle
,”
Proceedings of the 5th International Symposium–Supercritical CO2 Power Cycles
,
San Antonio, TX
,
Mar. 28–31
, pp.
6
7
.
17.
Haseli
,
Y.
, and
Sifat
,
N. S.
,
2021
, “
Performance Modeling of Allam Cycle Integrated With a Cryogenic Air Separation Process
,”
Comput. Chem. Eng.
,
148
, p.
107263
.
18.
Alenezi
,
A.
,
Vesely
,
L.
, and
Kapat
,
J.
,
2022
, “
Exergoeconomic Analysis of Hybrid sCO2 Brayton Power Cycle
,”
Energy
,
247
, p.
123436
.
19.
Liu
,
Z.
,
Li
,
Z.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Zhao
,
B.
,
2022
, “
Thermodynamic Analysis of Using Chemical-Looping Combustion in Allam-Z Cycle Instead of Common Combustion
,”
Energy Convers. Manage.
,
254
, p.
115229
.
20.
Rogalev
,
A.
,
Grigoriev
,
E.
,
Kindra
,
V.
, and
Rogalev
,
N.
,
2019
, “
Thermodynamic Optimization and Equipment Development for a High Efficient Fossil Fuel Power Plant With Zero Emissions
,”
J. Cleaner Prod.
,
236
, p.
117592
.
21.
Rogalev
,
A.
,
Rogalev
,
N.
,
Kindra
,
V.
,
Vegera
,
A.
, and
Zonov
,
A.
,
2021
, “
Multi-stream Heat Exchanger for Oxy-Fuel Combustion Power Cycle
,”
AIP Conference Proceedings 2323
,
Pilsen, Czech Republic
,
Sept. 8–10, 2020
.
22.
Bai
,
Z.
,
Liu
,
Q.
,
Lei
,
J.
,
Li
,
H.
, and
Jin
,
H.
,
2015
, “
A Polygeneration System for the Methanol Production and the Power Generation With the Solar–Biomass Thermal Gasification
,”
Energy Convers. Manage.
,
102
, pp.
190
201
.
23.
Chan
,
W.
,
Li
,
H.
,
Li
,
X.
,
Chang
,
F.
,
Wang
,
L.
, and
Feng
,
Z.
,
2021
, “
Exergoeconomic Analysis and Optimization of the Allam Cycle With Liquefied Natural Gas Cold Exergy Utilization
,”
Energy Convers. Manage.
,
235
, p.
113972
.
24.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1995
,
Thermal Design and Optimization
,
John Wiley & Sons
,
Hoboken, NJ
.
25.
Song
,
G.
,
Shen
,
L.
, and
Xiao
,
J.
,
2011
, “
Estimating Specific Chemical Exergy of Biomass From Basic Analysis Data
,”
Ind. Eng. Chem. Res.
,
50
(
16
), pp.
9758
9766
.
26.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
27.
Luo
,
J.
,
Emelogu
,
O.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2021
, “
Exergy-Based Investigation of a Coal-Fired Allam Cycle
,”
Energy
,
218
, p.
119471
.
28.
Chan
,
W.
,
Lei
,
X.
,
Chang
,
F.
, and
Li
,
H.
,
2020
, “
Thermodynamic Analysis and Optimization of Allam Cycle With a Reheating Configuration
,”
Energy Convers. Manage.
,
224
, p.
113382
.
29.
Xu
,
C.
,
Liu
,
Y.
,
Zhang
,
Q.
,
Xin
,
T.
,
Zhao
,
R.
,
Wang
,
M.
,
Saw
,
W.
, and
Lu
,
S.
,
2021
, “
Thermodynamic Analysis of a Novel Biomass Polygeneration System for Ammonia Synthesis and Power Generation Using Allam Power Cycle
,”
Energy Convers. Manage.
,
247
, p.
114746
.
30.
Weiland
,
N. T.
, and
White
,
C. W.
,
2018
, “
Techno-Economic Analysis of an Integrated Gasification Direct-Fired Supercritical CO2 Power Cycle
,”
Fuel
,
212
, pp.
613
625
.
31.
Weiland
,
N. T.
,
Lance
,
B. W.
, and
Pidaparti
,
S. R.
,
2019
, “
sCO2 Power Cycle Component Cost Correlations From DOE Data Spanning Multiple Scales and Applications
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
32.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
Woodhead Publishing
,
Cambridge, Cambridgeshire, UK
.
33.
Lee
,
Y. D.
,
Ahn
,
K. Y.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2018
, “
Exergetic and Exergoeconomic Evaluation of an SOFC-Engine Hybrid Power Generation System
,”
Energy
,
145
, pp.
810
822
.
34.
Dorj
,
P.
,
2005
, “
Thermoeconomic Analysis of a New Geothermal Utilization CHP Plant in Tsetserleg
,”
MSc thesis
,
United Nations University
,
Mongolia
. https://orkustofnun.is/gogn/unu-gtp-report/UNU-GTP-2005-02.pdf
35.
Campanari
,
S.
,
Chiesa
,
P.
,
Manzolini
,
G.
, and
Bedogni
,
S.
,
2014
, “
Economic Analysis of CO2 Capture From Natural Gas Combined Cycles Using Molten Carbonate Fuel Cells
,”
Appl. Energy
,
130
, pp.
562
573
.
36.
Caputo
,
A. C.
,
Palumbo
,
M.
,
Pelagagge
,
P. M.
, and
Scacchia
,
F.
,
2005
, “
Economics of Biomass Energy Utilization in Combustion and Gasification Plants: Effects of Logistic Variables
,”
Biomass Bioenergy
,
28
(
1
), pp.
35
51
.
37.
Kreutz
,
T.
,
Williams
,
R.
,
Consonni
,
S.
, and
Chiesa
,
P.
,
2005
, “
Co-Production of Hydrogen, Electricity and CO2 From Coal With Commercially Ready Technology. Part B: Economic Analysis
,”
Int. J. Hydrogen Energy
,
30
(
7
), pp.
769
784
.
You do not currently have access to this content.