Abstract

Ensemble Kalman filter is typically utilized to characterize reservoirs with high uncertainty. However, it requires a large number of reservoir models for stable and reliable update of its members, resulting in high simulation time. In this study, we propose a sampling scheme using convolutional autoencoder and principal component analysis for fast and reliable channel reservoir characterization. The proposed method provides good initial models similar to the reference model and gives successful model update for reliable quantification of future performances of channel reservoirs. Despite using fewer than 50 reservoir models, we achieve similar or even superior results compared to using all 400 initial models in this study. We demonstrate that the proposed scheme with ensemble Kalman filter provides faithful assimilation results while saving computation time.

References

1.
Evensen
,
G.
,
1994
, “
Sequential Data Assimilation With a Nonlinear Quasi-geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics
,”
J. Geophys. Res.
,
99
(
C5
), p.
10143
.
2.
Nævdal
,
G.
,
Mannseth
,
T.
, and
Vefring
,
E. H.
,
2002
, “
Near-Well Reservoir Monitoring Through Ensemble Kalman Filter
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 13–17
, SPE, pp.
959
967
.
3.
Liu
,
N.
, and
Oliver
,
D. S.
,
2005
, “
Ensemble Kalman Filter for Automatic History Matching of Geologic Facies
,”
J. Pet. Sci. Eng.
,
47
(
3–4
), pp.
147
161
.
4.
Zhao
,
Y.
,
Reynolds
,
A. C.
, and
Li
,
G.
,
2008
, “
Generating Facies Maps by Assimilating Production Data and Seismic Data With the Ensemble Kalman Filter
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 19–23
, Vol. 3, SPE, pp.
1386
1415
.
5.
Lee
,
K.
,
Jeong
,
H.
,
Jung
,
S.
, and
Choe
,
J.
,
2013
, “
Characterization of Channelized Reservoir Using Ensemble Kalman Filter With Clustered Covariance
,”
Energy Explor. Exploit.
,
31
(
1
), pp.
17
29
.
6.
Lorentzen
,
R. J.
,
Flornes
,
K. M.
, and
Nævdal
,
G.
,
2012
, “
History Matching Channelized Reservoirs Using the Ensemble Kalman Filter
,”
SPE J.
,
17
(
1
), pp.
137
151
.
7.
Jung
,
H.
,
Jo
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Characterization of Various Channel Fields Using an Initial Ensemble Selection Scheme and Covariance Localization
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062906
.
8.
Kim
,
S.
,
Jung
,
H.
, and
Choe
,
J.
,
2019
, “
Enhanced History Matching of Gas Reservoirs With an Aquifer Using the Combination of Discrete Cosine Transform and Level Set Method in ES-MDA
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072906
.
9.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2008
, “
History Matching With an Ensemble Kalman Filter and Discrete Cosine Parameterization
,”
Comput. Geosci.
,
12
(
2
), pp.
227
244
.
10.
Jung
,
H.
,
Jo
,
H.
,
Kim
,
S.
,
Kang
,
B.
,
Jeong
,
H.
, and
Choe
,
J.
,
2020
, “
Use of Channel Information Update and Discrete Cosine Transform in Ensemble Smoother for Channel Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012901
.
11.
Shin
,
Y.
,
Jeong
,
H.
, and
Choe
,
J.
,
2010
, “
Reservoir Characterization Using an EnKF and a Non-parametric Approach for Highly Non-Gaussian Permeability Fields
,”
Energy Sources A: Recovery Util. Environ. Eff.
,
32
(
16
), pp.
1569
1578
.
12.
Jo
,
H.
,
Jung
,
H.
,
Ahn
,
J.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
History Matching of Channel Reservoirs Using Ensemble Kalman Filter With Continuous Update of Channel Information
,”
Energy Explor. Exploit.
,
35
(
1
), pp.
3
23
.
13.
Evensen
,
G.
,
2004
, “
Sampling Strategies and Square Root Analysis Schemes for the EnKF
,”
Ocean Dyn.
,
54
(
6
), pp.
539
560
.
14.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2009
, “
Estimating Channelized-Reservoir Permeabilities With the Ensemble Kalman Filter: The Importance of Ensemble Design
,”
SPE J.
,
14
(
2
), pp.
374
388
.
15.
Lee
,
K.
,
Jung
,
S.
,
Lee
,
T.
, and
Choe
,
J.
,
2017
, “
Use of Clustered Covariance and Selective Measurement Data in Ensemble Smoother for Three-Dimensional Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022905
.
16.
Kim
,
S.
,
Jung
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Initial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022911
.
17.
Kang
,
B.
, and
Choe
,
J.
,
2017
, “
Regeneration of Initial Ensembles With Facies Analysis for Efficient History Matching
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042903
.
18.
Lee
,
Y.
,
Kang
,
B.
,
Kim
,
J.
, and
Choe
,
J.
,
2022
, “
Model Regeneration Scheme Using a Deep Learning Algorithm for Reliable Uncertainty Quantification of Channel Reservoirs
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
093004
.
19.
Jung
,
H.
,
Jo
,
H.
,
Kim
,
S.
,
Lee
,
K.
, and
Choe
,
J.
,
2018
, “
Geological Model Sampling Using PCA-Assisted Support Vector Machine for Reliable Channel Reservoir Characterization
,”
J. Pet. Sci. Eng.
,
167
(
1
), pp.
396
405
.
20.
Kang
,
B.
,
Yang
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Ensemble Kalman Filter With Principal Component Analysis Assisted Sampling for Channelized Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032907
.
21.
Kang
,
B.
,
Jung
,
H.
,
Jeong
,
H.
, and
Choe
,
J.
,
2020
, “
Characterization of Three-Dimensional Channel Reservoirs Using Ensemble Kalman Filter Assisted by Principal Component Analysis
,”
Pet. Sci.
,
17
(
1
), pp.
182
195
.
22.
Masci
,
J.
,
Meier
,
U.
,
Cireşan
,
D.
, and
Schmidhuber
,
J.
,
2011
, “Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction,”
Artificial Neural Networks and Machine Learning—ICANN 2011. ICANN 2011. Lecture Notes in Computer Science
, Vol. 6791,
T.
Honkela
,
W.
Duch
,
M.
Girolami
, and
S.
Kaski
, eds.,
Springer
,
Berlin
, pp.
52
59
.
23.
Wang
,
C.
,
Yang
,
B.
, and
Liao
,
Y.
,
2017
, “
Unsupervised Image Segmentation Using Convolutional Autoencoder With Total Variation Regularization as Preprocessing
,”
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
New Orleans, LA
,
Mar. 5–9
, pp.
1877
1881
.
24.
Zhao
,
W.
,
Jia
,
Z.
,
Wei
,
X.
, and
Wang
,
H.
,
2018
, “
An FPGA Implementation of a Convolutional Auto-Encoder
,”
Appl. Sci.
,
8
(
4
), p.
504
.
25.
Xu
,
J.
, and
Duraisamy
,
K.
,
2020
, “
Multi-level Convolutional Autoencoder Networks for Parametric Prediction of Spatio-temporal Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
372
(
1
), p.
113379
.
26.
Pintelas
,
E.
,
Livieris
,
I.
, and
Pintelas
,
P.
,
2021
, “
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
,”
Sensors (Switzerland)
,
21
(
22
), pp.
1
16
.
27.
Jo
,
S.
,
Park
,
C.
,
Ryu
,
D. W.
, and
Ahn
,
S.
,
2021
, “
Adaptive Surrogate Estimation With Spatial Features Using a Deep Convolutional Autoencoder for CO2 Geological Sequestration
,”
Energies
,
14
(
2
), p.
413
.
28.
Jo
,
S.
,
Jeong
,
H.
,
Min
,
B.
,
Park
,
C.
,
Kim
,
Y.
,
Kwon
,
S.
, and
Sun
,
A.
,
2022
, “
Efficient Deep-Learning-Based History Matching for Fluvial Channel Reservoirs
,”
J. Pet. Sci. Eng.
,
208
(
1
), p.
109247
.
29.
Remy
,
N.
,
Boucher
,
A.
, and
Wu
,
J.
,
2009
,
Applied Geostatistics With SGeMS A User’s Guide
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.