Abstract

Frac hits were not unfamiliar in tight gas development. During the hydraulic fracturing process in infill well, due to closely spaced wells and parent well depletion, operators often encounter fracture interference between the parent well and infill well, resulting in frac hits. This phenomenon typically has a significant impact on the productivity of both infill and parent wells. However, effectively mitigating and minimizing the negative effects of frac hits continues to pose a formidable challenge. Therefore, we developed a new frac hits evaluation and management workflow, aiming to investigate the mechanism of frac hits between infill well and parent well and improve the performance of the infill well while avoiding frac hits. The results indicate that an increased extent of parent well depletion leads to higher surrounding rock pressure and stress depletion. The stress deflection region near the fracture tip of the parent well attracts the propagation of infill well fractures, resulting in frac hits and significantly affecting the performance of the parent well. Consequently, optimizing the timing of hydraulic fracturing in the infill well is beneficial to mitigate parent well depletion, controlling frac hits and enhancing gas well productivity. This research provides important insights for mitigating parent–infill well interference in the development of tight gas reservoirs and establishes a solid foundation for future studies.

References

1.
Wu
,
Q.
, and
Xu
,
Y.
,
2012
, “
Volume Fracturing Technology of Unconventional Reservoirs: Connotation, Optimization Design and Implementation
,”
Petrol. Expl. Dev.
,
39
(
3
), pp.
352
358
.
2.
Lecampion
,
B.
,
Bunger
,
A.
, and
Zhang
,
X.
,
2018
, “
Numerical Methods for Hydraulic Fracture Propagation: A Review of Recent Trends
,”
J. Nat. Gas Sci. Eng.
,
49
, pp.
66
83
.
3.
Li
,
Y.
,
Yang
,
S.
,
Zhao
,
W.
,
Li
,
W.
, and
Zhang
,
J.
,
2018
, “
Experimental of Hydraulic Fracture Propagation Using Fixed-Point Multistage Fracturing in a Vertical Well in Tight Sandstone Reservoir
,”
J. Petrol. Sci. Eng.
,
171
, pp.
704
713
.
4.
Li
,
Y.
,
Long
,
M.
,
Zuo
,
L.
,
Li
,
W.
, and
Zhao
,
W.
,
2019
, “
Brittleness Evaluation of Coal Based on Statistical Damage and Energy Evolution Theory
,”
J. Petrol. Sci. Eng.
,
172
, pp.
753
763
.
5.
Zheng
,
S.
,
Manchanda
,
R.
,
Gala
,
D.
, and
Sharma
,
M.
,
2021
, “
Preloading Depleted Parent Wells to Avoid Fracture Hits: Some Important Design Considerations
,”
SPE Drill. Compl.
,
36
(
01
), pp.
170
187
.
6.
Dai
,
Q.
,
Zhang
,
L.
,
Zhang
,
K.
,
Chen
,
G.
,
Ma
,
X.
,
Wang
,
J.
,
Zhang
,
H.
,
Yan
,
X.
,
Liu
,
P.
, and
Yang
,
Y.
,
2023
, “
An Efficient Infill Well Placement Optimization Approach for Extra-Low Permeability Reservoir
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
033001
.
7.
Lawal
,
H.
,
Jackson
,
G.
, and
Abolo
,
N.
,
2013
, “
A Novel Approach to Modeling and Forecasting Frac Hits in Shale Gas Wells
,”
The EAGE Annual Conference & Exhibition Incorporating SPE Europec
,
London, UK
,
June 10–13
.
8.
King
,
G. E.
, and
Valencia
,
R. L.
,
2016
, “
Well Integrity for Fracturing and Re-Fracturing: What Is Needed and Why
,”
The SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 9–11
.
9.
Rucker
,
W. K.
,
Bobich
,
J.
, and
Wallace
,
K.
,
2016
, “
Low Cost Field Application of Pressure Transient Connectivity for Rapid Determination of the Upper Limit of Horizontal Well Spacing
,”
The SPE/AAPG/SEG Unconventional Resources Technology Conference
,
San Antonio, TX
,
Aug. 1–3
.
10.
Sangnimnuan
,
A.
,
Li
,
J.
,
Wu
,
K.
, and
Holditch
,
S.
,
2019
, “
Impact of Parent Well Depletion on Stress Changes and Infill Well Completion in Multiple Layers in Permian Basin
,”
The SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Denver, CO
,
July 22–24
.
11.
Ratzlaff
,
C. W.
,
Sondergeld
,
C. H.
, and
Rai
,
C. S.
,
2019
, “
SEM Investigation of the Fracture Network (Stimulated Reservoir Volume) Induced by Hydraulic Fracturing in Tennessee Sandstone
,”
The 53rd U.S. Rock Mechanics/Geomechanics Symposium
,
New York City
,
June 23–26
.
12.
Carpenter
,
C.
,
2022
, “
Study Investigates Mechanisms for Damage vs. Uplift in Different Basins
,”
J. Petrol. Technol.
,
74
(
11
), pp.
84
86
.
13.
Miller
,
G.
,
Lindsay
,
G.
, and
Baihly
,
J.
,
2016
, “
Parent Well Refracturing: Economic Safety Nets in an Uneconomic Market
,”
the SPE Low Perm Symposium
,
Denver, CO
,
May 5–6
.
14.
Whitfield
,
T.
,
Watkins
,
M. H.
, and
Dickinson
,
L. J.
,
2018
, “
Pre-Loads: Successful Mitigation of Damaging Frac Hits in the Eagle Ford
,”
The SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Sept. 24–26
.
15.
Yang
,
D.
,
Moridis
,
G. J.
, and
Blasingame
,
T. A.
,
2014
, “
A Fully Coupled Multiphase Flow and Geomechanics Solver for Highly Heterogeneous Porous Media
,”
J. Comput. Appl. Math.
,
270
, pp.
417
432
.
16.
Guo
,
X.
,
Song
,
H.
,
Wu
,
K.
, and
Killough
,
J.
,
2018
, “
Pressure Characteristics and Performance of Multi-Stage Fractured Horizontal Well in Shale Gas Reservoirs With Coupled Flow and Geomechanics
,”
J. Petrol. Sci. Eng.
,
163
, pp.
1
15
.
17.
Manchanda
,
R.
,
Bhardwaj
,
P.
, and
Hwang
,
J.
,
2018
, “
Parent-Child Fracture Interference: Explanation and Mitigation of Child Well Underperformance
,”
The SPE Hydraulic Fracturing Technology Conference and Exhibition
,
The Woodlands, TX
,
Jan. 23–25
.
18.
Zhang
,
F.
,
Damjanac
,
B.
, and
Maxwell
,
S.
,
2019
, “
Investigating Hydraulic Fracturing Complexity in Naturally Fractured Rock Masses Using Fully Coupled Multiscale Numerical Modeling
,”
Rock Mech. Rock Eng.
,
52
(
12
), pp.
5137
5160
.
19.
Bommer
,
P.
,
Bayne
,
M.
, and
Mayerhofer
,
M.
,
2017
, “
Re-Designing From Scratch and Defending Offset Wells: Case Study of a Six-Well Bakken Zipper Project, McKenzie County, ND
,”
The SPE Hydraulic Fracturing Technology Conference and Exhibition
,
The Woodlands, TX
,
Jan. 24–26
.
20.
Daramola
,
B.
,
2021
, “
Maximising Infill Well Oil Recovery With 4D Seismic and Reservoir Simulation
,”
The SPE Trinidad and Tobago Section Energy Resources Conference
,
Virtual
,
June 28–30
.
21.
Marongiu-Porcu
,
M.
,
Lee
,
D.
,
Shan
,
D.
, and
Morales
,
A.
,
2016
, “
Advanced Modeling of Interwell-Fracturing Interference: An Eagle Ford Shale-Oil Study
,”
SPE J.
,
21
(
05
), pp.
1567
1582
.
22.
Luo
,
Y.
,
Hu
,
X.
, and
Zhou
,
F.
,
2023
, “
A New Water Hammer Decay Model: Analyzing the Interference of Multiple Fractures and Perforations on Decay Rate
,”
SPE J.
, pp.
1
13
.
23.
Gu
,
Y.
,
Gao
,
D.
,
Yang
,
J.
,
Diao
,
B.
,
Hu
,
D.
, and
Nie
,
S.
,
2021
, “
Optimization Design Method for the Bypass Trajectories of Infill Adjustment Wells in the Fracturing Areas of Shale gas Fields
,”
Nat. Gas Ind. B
,
8
(
2
), pp.
205
215
.
24.
Muther
,
T.
,
Syed
,
F. I.
,
Dahaghi
,
A. K.
, and
Negahban
,
S.
,
2022
, “
Socio-Inspired Multi-Cohort Intelligence and Teaching-Learning-Based Optimization for Hydraulic Fracturing Parameters Design in Tight Formations
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
073201
.
25.
Hui
,
G.
,
Chen
,
Z.
,
Chen
,
S.
, and
Gu
,
F.
,
2022
, “
Hydraulic Fracturing-Induced Seismicity Characterization Through Coupled Modeling of Stress and Fracture-Fault Systems
,”
Adv. Geo-Energy Res.
,
6
(
3
), pp.
269
270
.
26.
Seales
,
M. B.
,
2020
, “
Multiphase Flow in Highly Fractured Shale Gas Reservoirs: Review of Fundamental Concepts for Numerical Simulation
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
100801
.
27.
Sun
,
H.
,
Ouyang
,
W.
,
Zhu
,
S.
,
Wan
,
Y.
,
Tang
,
Y.
, and
Cao
,
W.
,
2023
, “
A New Numerical Well Test Method of Multi-Scale Discrete Fractured Tight Sandstone Gas Reservoirs and Its Application in the Kelasu Gas Field of the Tarim Basin
,”
Nat. Gas Ind. B
,
10
(
2
), pp.
103
113
.
28.
Gudala
,
M.
, and
Govindarajan
,
S. K.
,
2020
, “
Numerical Modeling of Coupled Fluid Flow and Geomechanical Stresses in a Petroleum Reservoir
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
063006
.
29.
Fu
,
J. H.
,
Fan
,
L. Y.
, and
Liu
,
X. S.
,
2009
, “
Gas Accumulation Conditions and Key Exploration and Development Technologies in Sulige Gas Field
,”
J. Acta Petrol. Sin.
,
30
(
5
), pp.
240
256
.
30.
Wang
,
J. P.
,
Zhang
,
C. W.
, and
Li
,
J. Y.
,
2021
, “
Tight Sandstone Gas Reservoirs in the Sulige Gas Field: Development Understandings and Stable-Production Proposals
,”
Nat. Gas Ind.
,
41
(
2
), pp.
100
110
.
31.
Wang
,
X. Z.
,
Qiao
,
X. Y.
, and
Zhang
,
L.
,
2022
, “
Innovation and Scale Practice of key Technologies for the Exploration and Development of Tight Sandstone Gas Reservoirs in Yan'an Gas Field of Southeastern Ordos Basin
,”
Nat. Gas Ind.
,
42
(
1
), pp.
102
113
.
32.
Zhang
,
Y.
,
Wang
,
W.
,
Cao
,
Y.
,
Chen
,
B.
,
Gu
,
Y.
, and
Ye
,
L.
,
2022
, “
Research and Test for Shut-In After Fracturing of Volume Fracturing Technology in Sulige Low Pressure Tight Gas
,”
Nat. Gas Ind. B
,
9
(
3
), pp.
271
276
.
33.
Ma
,
D.
,
Duan
,
H.
,
Zhang
,
J.
, and
Bai
,
H.
,
2022
, “
A State-of-the-Art Review on Rock Seepage Mechanism of Water Inrush Disaster in Coal Mines
,”
Int. J. Coal Sci. Technol.
,
9
(
1
), p.
50
.
34.
Zhao
,
K.
, and
Du
,
P.
,
2019
, “
Performance of Horizontal Wells in Composite Tight Gas Reservoirs Considering Stress Sensitivity
,”
Adv. Geo-Energy Res.
,
3
(
3
), pp.
287
303
.
35.
Chai
,
Y.
, and
Yin
,
S.
,
2021
, “
3D Displacement Discontinuity Analysis of In-Situ Stress Perturbation Near a Weak Fault
,”
Adv. Geo-Energy Res.
,
5
(
3
), pp.
286
296
.
36.
Zhu
,
H.
,
Tang
,
X.
,
Song
,
Y.
,
Li
,
K.
,
Xiao
,
J.
,
Dusseault
,
M. B.
, and
McLennan
,
J. D.
,
2021
, “
An Infill Well Fracturing Model and Its Microseismic Events Barrier Effect: A Case in Fuling Shale Gas Reservoir
,”
SPE J.
,
26
(
1
), pp.
113
134
.
37.
Zhu
,
H. Y.
,
Song
,
Y. J.
,
Xu
,
Y.
,
Li
,
K. D.
, and
Tang
,
X. H.
,
2021
, “
Evolution of Four-Dimensional Stress in Shale Gas Reservoirs and Complex Fracture Propagation Laws of Infill Wells
,”
J. Petrol.
,
42
(
09
), pp.
1224
1236
.
38.
Zhang
,
Q.
,
Zhang
,
X.-P.
, and
Sun
,
W.
,
2021
, “
A Review of Laboratory Studies and Theoretical Analysis for the Interaction Mode Between Induced Hydraulic Fractures and Pre-Existing Fractures
,”
J. Nat. Gas Sci. Eng.
,
86
, p.
103719
.
39.
Hubbert
,
M. K.
, and
Willis
,
D. G.
,
1957
, “
Mechanics of Hydraulic Fracturing
,”
Trans. AIME
,
210
(
1
), pp.
153
168
.
40.
Masouleh
,
S. F.
,
Kumar
,
D.
, and
Ghassemi
,
A.
,
2020
, “
Three-Dimensional Geomechanical Modeling and Analysis of Refracturing and “Frac-Hits” in Unconventional Reservoirs
,”
Energies
,
13
(
20
), p.
5352
.
41.
Lou
,
J.
,
Gao
,
F.
,
Yang
,
J.
,
Ren
,
Y.
,
Li
,
J.
,
Wang
,
X.
, and
Yang
,
L.
,
2021
, “
Characteristics of Evolution of Mining-Induced Stress Field in the Longwall Panel: Insights From Physical Modeling
,”
Int. J. Coal Sci. Technol.
,
8
(
5
), pp.
938
955
.
42.
Wu
,
R.
,
Zhang
,
P.
,
Kulatilake
,
P. H.
,
Luo
,
H.
, and
He
,
Q.
,
2021
, “
Stress and Deformation Analysis of gob-Side pre-Backfill Driving Procedure of Longwall Mining: A Case Study
,”
Int. J. Coal Sci. Technol.
,
8
(
6
), pp.
1351
1370
.
43.
Chu
,
W.-C.-C.
,
Pandya
,
N. D.
,
Flumerfelt
,
R. W.
, and
Chen
,
C.
,
2019
, “
Rate-Transient Analysis Based on the Power-Law Behavior for Permian Wells
,”
SPE Reservoir Eval. Eng.
,
22
(
04
), pp.
1360
1370
.
44.
Chu
,
W.-C.
,
Scott
,
K.-D.
,
Flumerfelt
,
R.
,
Chen
,
C.
, and
Zuber
,
M. D.
,
2020
, “
A New Technique for Quantifying Pressure Interference in Fractured Horizontal Shale Wells
,”
SPE Reservoir Eval. Eng.
,
23
(
01
), pp.
143
157
.
You do not currently have access to this content.