Abstract

To increase the waste heat recovery (WHR) efficiency of gas boiler and decrease NOx emissions, a flue gas total heat recovery (FGTHR) system integrating direct contact heat exchanger (DCHE) and combustion air humidification (CAH) is put forward. The experimental bench and technical and economic analysis models are set up to simulate and evaluate the WHR performance and NOx emissions in various operation situations. The results show that when the air humidity ratio elevates from 3 g/kgdry air to 60 g/kgdry air, the dew point temperature increases by 7.9 °C. When the flue gas temperature approaches the dew point temperature, the rate of improvement of the FGTHR system's total heat efficiency notably rises. With spray water (SW) flowrate and temperature of 0.075 kg/s and 45 °C, the WHR efficiency relatively increases by up to 8.4%. The maximum sensible and latent heat can be recovered by 4468 w and 3774 w, respectively. The flue gas temperature can be reduced to 46.55 °C, and the average NOx concentration is 39.6 mg/m3. Compared with the non-humidified condition, the NOx and CO2 emissions relative reduction of the FGTHR system are 61.2% and 8.7%. The payback period of FGTHR system is 2 years. Through simulation, it can be concluded that the decrease in exhaust flue gas temperature and velocity, as well as the increase in exhaust flue gas humidity, has a negative impact on the diffusion of NOx in the atmosphere.

References

1.
Tsoumalis
,
G. I.
,
Bampos
,
Z. N.
,
Chatzis
,
G. V.
, and
Biskas
,
P. N.
,
2022
, “
Overview of Natural Gas Boiler Optimization Technologies and Potential Applications on Gas Load Balancing Services
,”
Energies
,
15
(
22
), p.
8461
.
2.
Kovacevic
,
M.
,
Lambic
,
M.
,
Radovanovic
,
L.
,
Pekez
,
J.
,
Ilic
,
D.
,
Nikolic
,
N.
, and
Kucora
,
I.
,
2017
, “
Increasing the Efficiency by Retrofitting Gas Boilers Into a Condensing Heat Exchanger
,”
Energy Sources B: Econ. Plan. Policy
,
12
(
5
), pp.
470
479
.
3.
Qureshi
,
Y.
,
Ali
,
U.
, and
Sher
,
F.
,
2021
, “
Part Load Operation of Natural Gas Fired Power Plant With CO2 Capture System for Selective Exhaust Gas Recirculation
,”
Appl. Therm. Eng.
,
190
, p.
116808
.
4.
Yi
,
Z.
,
Zhou
,
Z.
,
Tao
,
Q.
, and
Jiang
,
Z.
,
2019
, “
Experimental and Numerical Investigations in a Gas-Fired Boiler With Combustion Stabilizing Device
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112201
.
5.
Energy Institute
,
2021
, “BP Statistical Review of World Energy 2020 69th Edition,” https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
6.
Shuangchen
,
M.
,
Jin
,
C.
,
Kunling
,
J.
,
Lan
,
M.
,
Sijie
,
Z.
, and
Kai
,
W.
,
2017
, “
Environmental Influence and Countermeasures for High Humidity Flue Gas Discharging From Power Plants
,”
Renew. Sust. Energy Rev.
,
73
, pp.
225
235
.
7.
Cui
,
X. Y.
,
Zhang
,
H. Y.
,
Guo
,
J. F.
,
Huai
,
X. L.
, and
Xu
,
M.
,
2019
, “
Analysis of Two-Stage Waste Heat Recovery Based on Natural Gas-Fired Boiler
,”
Int. J. Energy Res.
,
43
(
14
), pp.
8898
8912
.
8.
Kapustenko
,
P.
,
Arsenyeva
,
O.
,
Fedorenko
,
O.
, and
Kusakov
,
S.
,
2022
, “
Integration of Low-Grade Heat From Exhaust Gases Into Energy System of the Enterprise
,”
Clean Technol. Environ. Policy
,
24
(
1
), pp.
67
76
.
9.
Ghobadi
,
J.
,
Ramirez
,
D.
,
Khoramfar
,
S.
,
Jerman
,
R.
,
Crane
,
M.
, and
Hobbs
,
K.
,
2018
, “
Simultaneous Absorption of Carbon Dioxide and Nitrogen Dioxide From Simulated Flue Gas Stream Using Gas-Liquid Membrane Contacting System
,”
Int. J. Greenh. Gas Control.
,
77
, pp.
37
45
.
10.
Paulauskas
,
R.
,
Jogi
,
I.
,
Striugas
,
N.
,
Martuzevicius
,
D.
,
Erme
,
K.
,
Raud
,
J.
, and
Tichonovas
,
M.
,
2019
, “
Application of Non-Thermal Plasma for NOx Reduction in the Flue Gases
,”
Energies
,
12
(
20
), p.
3955
.
11.
Jouhara
,
H.
,
Bertrand
,
D.
,
Axcell
,
B.
,
Montorsi
,
L.
,
Venturelli
,
M.
,
Almahmoud
,
S.
,
Milani
,
M.
,
Ahmad
,
L.
, and
Chauhan
,
A.
,
2021
, “
Investigation on a Full-Scale Heat Pipe Heat Exchanger in the Ceramics Industry for Waste Heat Recovery
,”
Energy
,
223
, p.
120037
.
12.
Murr
,
R.
,
Ramadan
,
M.
,
Khaled
,
M.
, and
Olabi
,
A. G.
,
2019
, “
An Iterative Code to Investigate Heat Pump Performance Improvement by Exhaust Gases Heat Recovery
,”
Energy Sources A: Recovery Util. Environ. Eff.
,
41
(
18
), pp.
2207
2218
.
13.
Shang
,
S.
,
Li
,
X.
,
Chen
,
W.
,
Wang
,
B.
, and
Shi
,
W.
,
2017
, “
A Total Heat Recovery System Between the Flue Gas and Oxidizing air of a Gas-Fired Boiler Using a Non-Contact Total Heat Exchanger
,”
Appl. Energy
,
207
, pp.
613
623
.
14.
Xiong
,
Y.
,
Tan
,
H.
,
Wang
,
Y.
,
Xu
,
W.
,
Mikulcic
,
H.
, and
Duic
,
N.
,
2017
, “
Pilot-Scale Study on Water and Latent Heat Recovery From Flue Gas Using Fluorine Plastic Heat Exchangers
,”
J. Cleaner Prod.
,
161
, pp.
1416
1422
.
15.
Zhang
,
Q.
,
Niu
,
Y.
,
Yang
,
X.
,
Sun
,
D.
,
Xiao
,
X.
,
Shen
,
Q.
, and
Wang
,
G.
,
2020
, “
Experimental Study of Flue Gas Condensing Heat Recovery Synergized With Low NOx Emission System
,”
Appl. Energy
,
269
, p.
115091
.
16.
Pan
,
Q. W.
,
Xu
,
J.
,
Ge
,
T. S.
, and
Wang
,
R. Z.
,
2022
, “
Multi-Mode Integrated System of Adsorption Refrigeration Using Desiccant Coated Heat Exchangers for Ultra-Low Grade Heat Utilization
,”
Energy
,
238
, p.
121813
.
17.
Brueckner
,
S.
,
Liu
,
S.
,
Miro
,
L.
,
Radspieler
,
M.
,
Cabeza
,
L. F.
, and
Laevemanna
,
E.
,
2015
, “
Industrial Waste Heat Recovery Technologies: An Economic Analysis of Heat Transformation Technologies
,”
Appl. Energy
,
151
, pp.
157
167
.
18.
Dai
,
B.
,
Liu
,
X.
,
Liu
,
S.
,
Zhang
,
Y.
,
Zhong
,
D.
,
Feng
,
Y.
,
Nian
,
V.
, and
Hao
,
Y.
,
2020
, “
Dual-Pressure Condensation High Temperature Heat Pump System for Waste Heat Recovery: Energetic and Exergetic Assessment
,”
Energy Convers. Manage.
,
218
, p.
112997
.
19.
Zhao
,
X.
,
Fu
,
L.
,
Wang
,
X.
,
Sun
,
T.
,
Wang
,
J.
, and
Zhang
,
S.
,
2017
, “
Flue Gas Recovery System for Natural Gas Combined Heat and Power Plant With Distributed Peak-Shaving Heat Pumps
,”
Appl. Therm. Eng.
,
111
, pp.
599
607
.
20.
Wang
,
J.
,
Hua
,
J.
,
Fu
,
L.
, and
Zhou
,
D.
,
2020
, “
Effect of Gas Nonlinearity on Boilersequipped With Vapour-Pump(BEVP) System for Flue-Gas Heat and Moisture Recovery
,”
Energy
,
198
, p.
117375
.
21.
Yu
,
H. S.
,
Gundersen
,
T.
, and
Feng
,
X.
,
2018
, “
Process Integration of Organic Rankine Cycle (ORC) and Heat Pump for Low Temperature Waste Heat Recovery
,”
Energy
,
160
, pp.
330
340
.
22.
Yang
,
B.
,
Yuan
,
W.
,
Fu
,
L.
,
Zhang
,
S.
,
Wei
,
M.
, and
Guo
,
D.
,
2020
, “
Techno-Economic Study of Full-Open Absorption Heat Pump Applied to Flue Gas Total Heat Recovery
,”
Energy
,
190
, p.
116429
.
23.
Kwon
,
M.
,
Nguyen
,
B. H.
,
Kim
,
S.
,
Kim
,
Y.
, and
Park
,
J. H.
,
2018
, “
Numerical Investigation of Buoyancy and Thermal Radiation Effects on a Mid-/Large-Sized Low NOx Combustion System With Flue-Gas Internal Recirculation
,”
Adv. Mech. Eng.
,
10
(
4
), p.
168781401876913
.
24.
Kikuchi
,
K.
,
Murai
,
R.
,
Hori
,
T.
, and
Akamatsu
,
F.
,
2022
, “
Fundamental Study on Ammonia Low-NOx Combustion Using Two-Stage Combustion by Parallel Air Jets
,”
Processes
,
10
(
1
), p.
23
.
25.
Jin
,
U.
, and
Kim
,
K. T.
,
2022
, “
Influence of Radial Fuel Staging on Combustion Instabilities and Exhaust Emissions From Lean-Premixed Multi-Element Hydrogen/Methane/Air Flames
,”
Combust. Flame
,
242
, p.
112184
.
26.
Sher
,
F.
,
Pans
,
M. A.
,
Sun
,
C. G.
,
Snape
,
C.
, and
Liu
,
H.
,
2018
, “
Oxy-Fuel Combustion Study of Biomass Fuels in a 20 kW(th) Fluidized Bed Combustor
,”
Fuel
,
215
, pp.
778
786
.
27.
Zajemska
,
M.
,
Musiał
,
D.
, and
Poskart
,
A.
,
2014
, “
Effective Methods of Reduction of Nitrogen Oxides Concentration During the Natural Gas Combustion
,”
Environ. Technol.
,
35
(
5
), pp.
602
610
.
28.
Majdi Yazdi
,
M. R.
,
Ommi
,
F.
,
Ehyaei
,
M. A.
, and
Rosen
,
M. A.
,
2020
, “
Comparison of Gas Turbine Inlet Air Cooling Systems for Several Climates in Iran Using Energy, Exergy, Economic, and Environmental (4E) Analyses
,”
Energy Convers. Manage.
,
216
, p.
112944
.
29.
Gascoin
,
N.
,
Yang
,
Q. C.
, and
Chetehouna
,
K.
,
2017
, “
Thermal Effects of CO2 on the NO Formation Behavior in the CH4 Diffusion Combustion System
,”
Appl. Therm. Eng.
,
110
, pp.
144
149
.
30.
Abdelaal
,
M.
,
El-Riedy
,
M.
,
El-Nahas
,
A. M.
, and
El-Wahsh
,
F. R.
,
2021
, “
Characteristics and Flame Appearance of Oxy-Fuel Combustion Using Flue Gas Recirculation
,”
Fuel
,
297
, p.
120775
.
31.
Pourhoseini
,
S. H.
,
2020
, “
Enhancement of Radiation Characteristics and Reduction of NOx Emission in Natural Gas Flame Through Silver-Water Nanofluid Injection
,”
Energy
,
194
, p.
116900
.
32.
Feser
,
J. S.
,
Gupta
,
A. K.
, and
Amer Soc Mech
,
E.
,
2020
, “
Performance and Emissions of Drop-In Aviation Biofuels in a Lab Scale Gas Turbine Combustor
,”
Proceedings of the ASME Power Conference (POWER)
,
Online
,
Aug. 4–5
,
p. V001T03A016
.
33.
Ge
,
B.
,
Tian
,
Y.
, and
Zang
,
S.
,
2016
, “
The Effects of Humidity on Combustion Characteristics of a Nonpremixed Syngas Flame
,”
Int. J. Hydrog. Energy
,
41
(
21
), pp.
9219
9226
.
34.
Vandel
,
A.
,
Chica Cano
,
J. P.
,
de Persis
,
S.
, and
Cabot
,
G.
,
2022
, “
Study of the Influence of Water Vapour and Carbon Dioxide Dilution on Pollutants Emitted by Swirled Methane/Oxygen-Enriched Air Flames
,”
Exp. Therm. Fluid. Sci.
,
130
, p.
110483
.
35.
“The United States Environmental Protection Agency (EPA),” https://www.airnow.gov/, Accessed 2018.
36.
Ministry of Environmental Protection
,
2012
, GB/T 3095-2012. Beijing, Ministry of Environmental Protection, (in Chinese), http://www.syq.gov.cn/syq_doc/uploadfile/1448933137210.pdf.
37.
Wei
,
H.
,
Huang
,
S.
, and
Zhang
,
X.
,
2022
, “
Experimental and Simulation Study on Heat and Mass Transfer Characteristics in Direct-Contact Total Heat Exchanger for Flue Gas Heat Recovery
,”
Appl. Therm. Eng.
,
200
, p.
117657
.
38.
Zuo
,
W.
,
Zhang
,
X.
, and
Li
,
Y.
,
2020
, “
Review of Flue Gas Acid Dew-Point and Related Low Temperature Corrosion
,”
J. Energy Inst.
,
93
(
4
), pp.
1666
1677
.
39.
Zhang
,
Q.
,
Zhao
,
W.
,
Sun
,
D.
,
Meng
,
X.
,
Hooman
,
K.
, and
Yang
,
X.
,
2023
, “
Combustion Air Humidification for NOx Emissions Reduction in Gas Boiler: An Experimental Study
,”
Heat Transf. Eng.
, pp.
1
14
.
40.
Zhang
,
T.
,
Zhou
,
Y.
, and
Zhou
,
B.
,
2022
, “
The Effects of the Initial NO Volume Fractions on the NOx Generation and Reduction Routes Under Natural Gas MILD Combustion Conditions
,”
Fuel
,
328
,
125175
.
41.
Chen
,
H.
,
Xie
,
B.
,
Ma
,
J.
, and
Chen
,
Y.
,
2018
, “
NOx Emission of Biodiesel Compared to Diesel: Higher or Lower?
,”
Appl. Therm. Eng.
,
137
, pp.
584
593
.
42.
Li
,
Z.
,
Hu
,
R.
,
Xie
,
P.
,
Chen
,
H.
,
Liu
,
X.
,
Liang
,
S.
,
Wang
,
D.
,
Wang
,
F.
,
Wang
,
Y.
,
Lin
,
C.
,
Liu
,
J.
, and
Liu
,
W.
,
2019
, “
Simultaneous Measurement of NO and NO2 by a Dual-Channel Cavity Ring-Down Spectroscopy Technique
,”
Atmos. Meas. Tech.
,
12
(
6
), pp.
3223
3236
.
43.
Li
,
F.
,
Lin
,
D.
,
Fu
,
L.
, and
Zhao
,
X.
,
2019
, “
Application of Absorption Heat Pump and Direct-Contact Total Heat Exchanger to Advanced-Recovery Flue-Gas Waste Heat for Gas Boiler
,”
Sci. Technol. Built Environ.
,
25
(
2
), pp.
149
155
.
44.
Yang
,
B.
,
Jiang
,
Y.
,
Fu
,
L.
, and
Zhang
,
S.
,
2018
, “
Experimental and Theoretical Investigation of a Novel Full-Open Absorption Heat Pump Applied to District Heating by Recovering Waste Heat of Flue Gas
,”
Energy Build.
,
173
, pp.
45
57
.
45.
de Almeida
,
D. S.
, and
Lacava
,
P. T.
,
2015
, “
Analysis of Pollutant Emissions in Double-Stage Swirl Chamber for Gas Turbine Application
,”
Proceedings of the 12th International Conference on Combustion and Energy Utilisation (ICCEU)
,
Lancaster, UK
,
Sept. 29–Oct. 3, 2014
, pp.
117
120
.
46.
Lee
,
S.
,
Kum
,
S.-M.
, and
Lee
,
C.-E.
,
2011
, “
An Experimental Study of a Cylindrical Multi-Hole Premixed Burner for the Development of a Condensing Gas Boiler
,”
Energy
,
36
(
7
), pp.
4150
4157
.
47.
Tian
,
Y. L.
,
Zhang
,
L. N.
,
Wang
,
Y.
,
Song
,
J. X.
, and
Sun
,
H. T.
,
2021
, “
Temporal and Spatial Trends in Particulate Matter and the Responses to Meteorological Conditions and Environmental Management in Xi'an, China
,”
Atmosphere
,
12
(
9
), p.
1112
.
48.
Hua
,
Y.
,
Wang
,
S.
,
Jiang
,
J.
,
Zhou
,
W.
,
Xu
,
Q.
,
Li
,
X.
,
Liu
,
B.
,
Zhang
,
D.
, and
Zheng
,
M.
,
2018
, “
Characteristics and Sources of Aerosol Pollution at a Polluted Rural Site Southwest in Beijing, China
,”
Sci. Total Environ.
,
626
, pp.
519
527
.
49.
China Control Engineering
,
2015
, “Uncovering the Truth of Smog: Ignoring the Temperature and Humidity of Emitted Smoke,” http://www.cechina.cn/.
You do not currently have access to this content.