Abstract

Micro-combustion based power generation devices can be considered as future alternatives to batteries in miniature electronic devices. Micro-combustors operating in non-premixed mode are free from flashback but face the challenge of properly mixing fuel and air within a small volume. In this work, the effect of a divergent fuel–air splitter design on the mixing performance and combustion characteristics of H2–air fueled diffusion micro-combustor is studied. The laminar reacting flow is simulated using the finite volume method and a detailed hydrogen kinetic mechanism. Three divergent splitter designs are compared with the commonly used rectangular splitter to study the effect on radiation power, an essential parameter for thermophotovoltaic power generation. The best-performing divergent and base rectangular splitter designs are investigated in detail. The study shows that the micro-combustor with divergent splitter design reduces mixing distance (Lmix) by 5–23% depending on inlet velocity and channel height. With the divergent splitter, the peak value of the heat release rate also increases slightly, implying enhanced combustion. The divergent splitter increases the high-temperature surface area of the outer wall as compared to the rectangular splitter. This leads to the micro-combustor with divergent splitter producing significantly higher radiation power (>10%) than the rectangular splitter for larger channel heights and higher inlet velocities.

References

1.
Sankar
,
V.
,
Sudarsanan
,
S.
,
Mukhopadhyay
,
S.
,
Selvaraj
,
P.
,
Balakrishnan
,
A.
, and
Velamati
,
R. K.
,
2023
, “
Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application–A Review
,”
Energies
,
16
(
10
), p.
4035
.
2.
Fernandez-Pello
,
A. C.
,
2002
, “
Micropower Generation Using Combustion: Issues and Approaches
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
883
899
.
3.
Sankar
,
V.
, and
Velamati
,
R. K.
,
2019
, “
Effect of Hydrogen Addition on Laminar Burning Velocity of Liquefied Petroleum Gas Blends
,”
Energy Fuels
,
34
(
1
), pp.
798
805
.
4.
Li
,
Y.-H.
, and
Hong
,
J. R.
,
2018
, “
Power Generation Performance of Hydrogen-Fueled Micro Thermophotovoltaic Reactor
,”
Int. J. Hydrogen Energy
,
43
(
3
), pp.
1459
1469
.
5.
Mustafa
,
K.
,
Abdullah
,
S.
,
Abdullah
,
M.
, and
Sopian
,
K.
,
2017
, “
A Review of Combustion-Driven Thermoelectric (TE) and Thermophotovoltaic (TPV) Power Systems
,”
Renew. Sustain. Energy Rev.
,
71
, pp.
572
584
.
6.
Tang
,
A.
,
Xu
,
Y.
,
Shan
,
C.
,
Pan
,
J.
, and
Liu
,
Y.
,
2015
, “
A Comparative Study on Combustion Characteristics of Methane, Propane and Hydrogen Fuels in a Micro-Combustor
,”
Int. J. Hydrogen Energy
,
40
(
46
), pp.
16587
16596
.
7.
Yang
,
W. M.
,
Chou
,
S.
,
Shu
,
C.
,
Li
,
Z.
, and
Xue
,
H.
,
2002
, “
Combustion in Micro-Cylindrical Combustors With and Without a Backward Facing Step
,”
Appl. Therm. Eng.
,
22
(
16
), pp.
1777
1787
.
8.
Peng
,
Q.
,
Jiaqiang
,
E.
,
Yang
,
W.
,
Xu
,
H.
,
Chen
,
J.
,
Zhang
,
F.
,
Meng
,
T.
, and
Qiu
,
R.
,
2019
, “
Experimental and Numerical Investigation of a Micro-Thermophotovoltaic System With Different Backward-Facing Steps and Wall Thicknesses
,”
Energy
,
173
, pp.
540
547
.
9.
Fan
,
A.
,
Zhang
,
H.
, and
Wan
,
J.
,
2017
, “
Numerical Investigation on Flame Blow-Off Limit of a Novel Microscale Swiss-Roll Combustor With a Bluff-Body
,”
Energy
,
123
, pp.
252
259
.
10.
Ansari
,
M.
, and
Amani
,
E.
,
2018
, “
Micro-Combustor Performance Enhancement Using a Novel Combined Baffle-Bluff Configuration
,”
Chem. Eng. Sci.
,
175
, pp.
243
256
.
11.
Yan
,
Y.
,
Shen
,
K.
,
Cui
,
Y.
,
He
,
Z.
,
Zhang
,
L.
,
Yang
,
Z.
, and
Ran
,
J.
,
2020
, “
Effects of Slitting Size and Inlet Operating Conditions on Hydrogen Combustion Characteristics in a Micro-Combustor With a Controllable Vortex Slotted Bluff Body
,”
ASME J. Energy Res. Technol.
,
142
(
4
), p.
042302
.
12.
Peng
,
Q.
,
Jiaqiang
,
E.
,
Chen
,
J.
,
Zuo
,
W.
,
Zhao
,
X.
, and
Zhang
,
Z.
,
2018
, “
Investigation on the Effects of Wall Thickness and Porous Media on the Thermal Performance of a Non-Premixed Hydrogen Fueled Cylindrical Micro Combustor
,”
Energy Convers. Manage.
,
155
, pp.
276
286
.
13.
Pan
,
J.
,
Wu
,
D.
,
Liu
,
Y.
,
Zhang
,
H.
,
Tang
,
A.
, and
Xue
,
H.
,
2015
, “
Hydrogen/Oxygen Premixed Combustion Characteristics in Micro Porous Media Combustor
,”
Appl. Energy
,
160
, pp.
802
807
.
14.
Yan
,
Y.
,
Wang
,
H.
,
Pan
,
W.
,
Zhang
,
L.
,
Li
,
L.
,
Yang
,
Z.
, and
Lin
,
C.
,
2016
, “
Numerical Study of Effect of Wall Parameters on Catalytic Combustion Characteristics of CH4/Air in a Heat Recirculation Micro-Combustor
,”
Energy Convers. Manage.
,
118
, pp.
474
484
.
15.
Lu
,
Q.
,
Pan
,
J.
,
Yang
,
W.
,
Tang
,
A.
,
Bani
,
S.
, and
Shao
,
X.
,
2017
, “
Interaction Between Heterogeneous and Homogeneous Reaction of Premixed Hydrogen-Air Mixture in a Planar Catalytic Micro-Combustor
,”
Int. J. Hydrogen Energy.
,
42
(
8
), pp.
5390
5399
.
16.
Wan
,
J.
,
Fan
,
A.
,
Maruta
,
K.
,
Yao
,
H.
, and
Liu
,
W.
,
2012
, “
Experimental and Numerical Investigation on Combustion Characteristics of Premixed Hydrogen/Air Flame in a Micro-Combustor With a Bluff Body
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19190
19197
.
17.
Yilmaz
,
H.
,
2019
, “
Investigation of Combustion and Emission Performance of a Micro Combustor: Effects of Bluff Body Insertion and Oxygen Enriched Combustion Conditions
,”
Int. J. Hydrogen Energy
,
44
(
47
), pp.
25985
25999
.
18.
Bagheri
,
G.
,
Hosseini
,
S. E.
, and
Wahid
,
M. A.
,
2014
, “
Effects of Bluff Body Shape on the Flame Stability in Premixed Micro-Combustion of Hydrogen–Air Mixture
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
266
272
.
19.
Qian
,
P.
,
Liu
,
M.
,
Li
,
X.
,
Xie
,
F.
,
Huang
,
Z.
,
Luo
,
C.
, and
Zhu
,
X.
,
2020
, “
Effects of Bluff-Body on the Thermal Performance of Micro Thermophotovoltaic System Based on Porous Media Combustion
,”
Appl. Therm. Eng.
,
174
, p.
115281
.
20.
Zhang
,
Y.
,
Lu
,
Q.
,
Fan
,
B.
,
Long
,
L.
,
Quaye
,
E. K.
, and
Pan
,
J.
,
2023
, “
Effect of Multiple Bluff Bodies on Hydrogen/Air Combustion Characteristics and Thermal Properties in Micro Combustor
,”
Int. J. Hydrogen Energy
,
48
(
10
), pp.
4064
4072
.
21.
Liu
,
Y.
,
Zhang
,
J.
,
Fan
,
A.
,
Wan
,
J.
,
Yao
,
H.
, and
Liu
,
W.
,
2014
, “
Numerical Investigation of CH4/O2 Mixing in Y-Shaped Mesoscale Combustors With/Without Porous Media
,”
Chem. Eng. Process.: Process Intensif.
,
79
, pp.
7
13
.
22.
Xu
,
B.
, and
Ju
,
Y.
,
2009
, “
Studies on Non-premixed Flame Streets in a Mesoscale Channel
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1375
1382
.
23.
Li
,
L.
,
Yuan
,
Z.
,
Xiang
,
Y.
, and
Fan
,
A.
,
2018
, “
Numerical Investigation on Mixing Performance and Diffusion Combustion Characteristics of H2 and Air in Planar Micro-Combustor
,”
Int. J. Hydrogen Energy
,
43
(
27
), pp.
12491
12498
.
24.
Li
,
L.
, and
Fan
,
A.
,
2021
, “
A Numerical Study on Non-Premixed H2/Air Flame Stability in a Micro-Combustor With a Slotted Bluff-Body
,”
Int. J. Hydrogen Energy
,
46
(
2
), pp.
2658
2666
.
25.
Tan
,
Y.
,
Jiaqiang
,
E.
,
Chen
,
J.
,
Liao
,
G.
,
Zhang
,
F.
, and
Li
,
J.
,
2022
, “
Investigation on Combustion Characteristics and Thermal Performance of a Three Rearward-Step Structure Micro Combustor Fueled by Premixed Hydrogen/Air
,”
Renew. Energy
,
186
, pp.
486
504
.
26.
Fan
,
A.
,
Wan
,
J.
,
Liu
,
Y.
,
Pi
,
B.
,
Yao
,
H.
,
Maruta
,
K.
, and
Liu
,
W.
,
2013
, “
The Effect of the Blockage Ratio on the Blow-Off Limit of a Hydrogen/air Flame in a Planar Micro-Combustor With a Bluff Body
,”
Int. J. Hydrogen Energy
,
38
(
26
), pp.
11438
11445
.
27.
Yan
,
Y.
,
Xu
,
F.
,
Xu
,
Q.
,
Zhang
,
L.
,
Yang
,
Z.
, and
Ran
,
J.
,
2019
, “
Influence of Controllable Slit Width and Angle of Controllable Flow on Hydrogen/Air Premixed Combustion Characteristics in Micro Combustor With Both Sides-Slitted Bluff Body
,”
Int. J. Hydrogen Energy
,
44
(
36
), pp.
20482
20492
.
28.
Zhang
,
Z.
,
Wu
,
K.
,
Yao
,
W.
,
Yuen
,
R.
, and
Wang
,
J.
,
2020
, “
Enhancement of Combustion Performance in a Microchannel: Synergistic Effects of Bluff-Body and Cavity
,”
Fuel
,
265
, p.
116940
.
29.
Beskok
,
A.
, and
Karniadakis
,
G. E.
,
1999
, “
Report: A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales
,”
Microscale Thermophys. Eng.
,
3
(
1
), pp.
43
77
.
30.
Kuo
,
C.
, and
Ronney
,
P.
,
2007
, “
Numerical Modeling of Non-Adiabatic Heat-Recirculating Combustors
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3277
3284
.
31.
Gao
,
W.
,
Yan
,
Y.
,
Huang
,
L.
,
Zhang
,
W.
, and
Shen
,
K.
,
2021
, “
Numerical Investigation on Combustion Characteristics of Premixed Hydrogen/Air in a Swirl Micro Combustor With Twisted Vanes
,”
Int. J. Hydrogen Energy.
,
46
(
80
), pp.
40105
40119
.
32.
Yan
,
Y.
,
Yan
,
H.
,
Zhang
,
L.
,
Li
,
L.
,
Zhu
,
J.
, and
Zhang
,
Z.
,
2018
, “
Numerical Investigation on Combustion Characteristics of Methane/Air in a Micro-Combustor With a Regular Triangular Pyramid Bluff Body
,”
Int. J. Hydrogen Energy
,
43
(
15
), pp.
7581
7590
.
33.
Pan
,
J.
,
Zhang
,
C.
,
Pan
,
Z.
,
Wu
,
D.
,
Zhu
,
Y.
,
Lu
,
Q.
, and
Zhang
,
Y.
,
2020
, “
Investigation on the Effect of Bluff Body Ball on the Combustion Characteristics for Methane/Oxygen in Micro Combustor
,”
Energy
,
190
, p.
116465
.
34.
Mohseni
,
S.
,
Nadimi
,
E.
,
Jafarmadar
,
S.
, and
Rezaei
,
R. A.
,
2021
, “
Enhance the Energy and Exergy Performance of Hydrogen Combustion by Improving the Micro-Combustor Outlet in Thermofluidic Systems
,”
Int. J. Hydrogen Energy
,
46
(
9
), pp.
6915
6927
.
35.
ANSYS
,
2018
, ANSYS FLUENT 19.2 Theory Guide.
36.
Jiaqiang
,
E.
,
Meng
,
T.
,
Chen
,
J.
,
Wu
,
W.
,
Zhao
,
X.
,
Zhang
,
B.
, and
Peng
,
Q.
,
2021
, “
Effect Analysis on Performance Enhancement of a Hydrogen/Air Non-Premixed Micro Combustor With Sudden Expansion and Contraction Structure
,”
Energy
,
230
, p.
120727
.
37.
Bharadwaz
,
N. A.
,
Jain
,
N.
, and
Arghode
,
V. K.
,
2020
, “
Development of a Standalone, Liquid Fuelled Miniature Power Generation System
,”
ASME J. Energy Res. Technol.
,
142
(
4
), p.
042004
.
38.
Yan
,
Y.
,
Shen
,
K.
,
Cui
,
Y.
,
He
,
Z.
,
Zhang
,
L.
,
Yang
,
Z.
, and
Ran
,
J.
,
2020
, “
Effects of Slitting Size and Inlet Operating Conditions on Hydrogen Combustion Characteristics in a Micro-Combustor With a Controllable Vortex Slotted Bluff Body
,”
ASME J. Energy Res. Technol.
,
142
(
4
), p.
042302
.
39.
Singh
,
A.
, and
Mukhopadhyay
,
S.
,
2023
, “
Effect of Strut Profile, Angled Injection, and Blunting of Leading Edge on Mixing of Supersonic Hydrogen-Air Streams
,”
Int. J. Hydrogen Energy
,
48
(
3
), pp.
1175
1188
.
40.
Zhao
,
M.
, and
Fan
,
A.
,
2020
, “
Buoyancy Effects on Hydrogen Diffusion Flames Confined in a Small Tube
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19926
19935
.
41.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
,
36
(
10
), pp.
566
575
.
42.
He
,
Z.
,
Yan
,
Y.
,
Zhao
,
T.
,
Zhang
,
Z.
, and
Mikulčić
,
H.
,
2022
, “
Parametric Study of Inserting Internal Spiral Fins on the Micro Combustor Performance for Thermophotovoltaic Systems
,”
Renewable Sustainable Energy Rev.
,
165
, p.
112595
.
43.
He
,
Z.
,
Yan
,
Y.
,
Feng
,
S.
,
Li
,
X.
,
Fang
,
R.
,
Ou
,
Z.
, and
Yang
,
Z.
,
2021
, “
Numerical Investigation on a Multi-channel Micro Combustor Fueled With Hydrogen for a Micro-Thermophotovoltaic System
,”
Int. J. Hydrogen Energy
,
46
(
5
), pp.
4460
4471
.
44.
Wei
,
D.
,
Peng
,
Q.
,
Wang
,
H.
,
Tian
,
X.
,
Xiao
,
H.
,
Liu
,
H.
, and
Fu
,
G.
,
2024
, “
Experimental Investigation of Blended H2/CH4 Combustion in Combustors With Block for Micro-Thermophotovoltaic
,”
Fuel
,
357
, p.
129869
.
45.
Huang
,
Y.
, and
Chen
,
Y.
,
2022
, “
A Novel Technique to Optimize Combustor Geometry for Micro Thermophotovoltaic System by Combining Numerical Simulation and Machine Learning
,”
Int. J. Hydrogen Energy
,
47
(
90
), pp.
38407
38426
.
46.
Li
,
J.
,
Jiaqiang
,
E.
,
Ding
,
J.
,
Cai
,
L.
, and
Luo
,
B.
,
2023
, “
Effect Analysis on Combustion Performance Enhancement of the Hydrogen-Fueled Micro-Cylindrical Combustors With Twisted Tapes for Micro-Thermophotovoltaic Applications
,”
Int. J. Hydrogen Energy
,
49
, pp.
725
743
.
47.
Aravind
,
B.
,
Khandelwal
,
B.
, and
Kumar
,
S.
,
2022
, “
Recent Advancements in Microcombustion-Based Power Generators
,”
Int. J. Energy Clean Environ.
,
23
(
2
).
48.
Chia
,
L. C.
, and
Feng
,
B.
,
2007
, “
The Development of a Micropower (Micro-Thermophotovoltaic) Device
,”
J. Power Sources
,
165
(
1
), pp.
455
480
.
49.
Park
,
J.
,
So
,
J.
,
Moon
,
H.
, and
Kwon
,
O.
,
2011
, “
Measured and Predicted Performance of a Micro-Thermophotovoltaic Device With a Heat-Recirculating Micro-Emitter
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1046
1054
.
50.
He
,
Z.
,
Yan
,
Y.
,
Zhao
,
T.
,
Feng
,
S.
,
Li
,
X.
,
Zhang
,
L.
, and
Zhang
,
Z.
,
2021
, “
Heat Transfer Enhancement and Exergy Efficiency Improvement of a Micro Combustor With Internal Spiral Fins for Thermophotovoltaic Systems
,”
Appl. Therm. Eng.
,
189
, p.
116723
.
You do not currently have access to this content.