Abstract

The increasing concentration of greenhouse gasses in Earth's atmosphere is a critical concern, of which 75% of carbon dioxide (CO2) emissions are from the combustion of fossil fuels. This rapid increase in emissions led to irredeemable damages to ecosystems, such as climate change and acid rain. As a result, industries and academia have focused on developing innovative and cost-effective technologies for CO2 capture and storage (CCS). Physical/chemical absorption using amine and membrane-based technologies is generally used in CCS systems. However, the inherent technical and cost-effective limitations of these techniques directed their attention toward applying nanotechnologies for CCS systems. Here, the researchers have focused on infusing nanoparticles (NPs) into existing CCS technologies. The NPs could either be suspended in a base fluid to create nanofluids (NFs) or infused with membrane base materials to create nanocomposite membranes for enhanced carbon capture capabilities. This review paper investigates the manufacturing methods, characterization techniques, and various mechanisms to analyze the impact of nanoparticles-infused nanofluids and nanocomposite membranes for CO2 capture. Finally, the paper summarizes the factors associated with the two technologies and then outlines the drawbacks and benefits of incorporating NPs for CCS applications.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Dong
,
L.
, and
Huang
,
Z.
,
2023
, “
Some Evidence and New Insights for Feedback Loops of Human-Nature Interactions From a Holistic Earth Perspective
,”
J. Cleaner Prod.
,
432
, pp.
139667
139683
.
2.
Kirschbaum
,
M. U.
,
Cowie
,
A. L.
,
Peñuelas
,
J.
,
Smith
,
P.
,
Conant
,
R. T.
,
Sage
,
R. F.
,
Brandao
,
M.
, et al
,
2023
, “
Is Tree Planting an Effective Strategy for Climate Change Mitigation?
,”
Sci. Total Environ.
,
909
, pp.
168479
168490
.
3.
McGlade
,
C.
, and
Ekins
,
P.
,
2015
, “
The Geographical Distribution of Fossil Fuels Unused When Limiting Global Warming to 2 C
,”
Nature
,
517
(
7533
), pp.
187
190
.
4.
Harvey
,
L. D.
,
2018
,
Global Warming: The Hard Science
,
Routledge
,
New York
.
5.
Baer
,
H.
, and
Singer
,
M.
,
2016
,
Global Warming and the Political Ecology of Health: Emerging Crises and Systemic Solutions
,
Routledge
,
New York
.
6.
Fang
,
M.
,
Njangang
,
H.
,
Padhan
,
H.
,
Simo
,
C.
, and
Yan
,
C.
,
2023
, “
Social Media and Energy Justice: A Global Evidence
,”
Energy Econ.
,
125
, pp.
106886
106898
.
7.
Al-Ghussain
,
L.
,
2019
, “
Global Warming: Review on Driving Forces and Mitigation
,”
Environ. Prog. Sustainable Energy
,
38
(
1
), pp.
13
21
.
8.
Office of the Auditor General of Canada
,
2022
, “Report 1—Progress on Reducing Greenhouse Gases—Environment and Climate Change Canada,” https://www.oag-bvg.gc.ca
9.
Rodriguez Acevedo
,
E.
,
Cortés
,
F. B.
,
Franco
,
C. A.
,
Carrasco-Marín
,
F.
,
Pérez-Cadenas
,
A. F.
,
Fierro
,
V.
,
Celzard
,
A.
,
Schaefer
,
S.
, and
Cardona Molina
,
A.
,
2019
, “
An Enhanced Carbon Capture and Storage Process (e-CCS) Applied to Shallow Reservoirs Using Nanofluids Based on Nitrogen-Rich Carbon Nanospheres
,”
Materials
,
12
(
13
), pp.
2088
2114
.
10.
Némethová
,
H.
,
Petríček
,
P.
,
Zgodavová
,
Z.
,
Tobisová
,
A.
,
Vagner
,
J.
, and
Choma
,
L.
,
2019
, “
Civil Aviation Experience for the Air Force: The Impact of Global Climate Change on the Selected Parameters of the Cessna Citation XLS+
,”
International Conference on Military Technologies (ICMT)
,
Brno, Czech Republic
,
May 30–31
, pp.
1
6
.
11.
International Energy Agency
,
2021
, “Net Zero by 2050: A Roadmap for the Global Energy Sector.” https://www.iea.org/reports/net-zero-by-2050
12.
Krishnan
,
A.
,
Nighojkar
,
A.
, and
Kandasubramanian
,
B.
,
2023
, “
Emerging Towards Zero Carbon Footprint via Carbon Dioxide Capturing and Sequestration
,”
Carbon Capture Sci. Technol.
,
9
, pp.
100137
100157
.
13.
Lee
,
J. W.
,
Kim
,
S.
,
Pineda
,
I. T.
, and
Kang
,
Y. T.
,
2021
, “
Review of Nanoabsorbents for Capture Enhancement of CO2 and Its Industrial Applications With Design Criteria
,”
Renewable Sustainable Energy Rev.
,
138
, pp.
110524
110532
.
14.
Wu
,
C.
,
Huang
,
Q.
,
Xu
,
Z.
,
Sipra
,
A. T.
,
Gao
,
N.
,
de Souza Vandenberghe
,
L. P.
,
Vieira
,
S.
, et al
,
2023
, “
A Comprehensive Review of Carbon Capture Science and Technologies
,”
Carbon Capture Sci. Technol.
,
1
, pp.
100178
100638
.
15.
Yu
,
C. H.
,
Huang
,
C. H.
, and
Tan
,
C. S.
,
2012
, “
A Review of CO2 Capture by Absorption and Adsorption
,”
Aerosol Air Qual. Res.
,
12
(
5
), pp.
745
769
.
16.
Gür
,
T. M.
,
2022
, “
Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials Processes and Technologies
,”
Prog. Energy Combust. Sci.
,
89
, pp.
100965
101021
.
17.
Merkel
,
T. C.
,
Lin
,
H.
,
Wei
,
X.
, and
Baker
,
R.
,
2010
, “
Power Plant Post-Combustion Carbon Dioxide Capture: An Opportunity for Membranes
,”
J. Membr. Sci.
,
359
(
1–2
), pp.
126
139
.
18.
Watson
,
J. C.
,
Pennisi
,
K. J.
,
Parrish
,
C.
, and
Majumdar
,
S.
,
2023
, “
Techno-Economic Process Optimization for a Range of Membrane Performances: What Provides Real Value for Point-Source Carbon Capture?
,”
Carbon Capture Sci. Technol.
,
1
, pp.
100182
100220
.
19.
Olajire
,
A. A.
,
2010
, “
CO2 Capture and Separation Technologies for End-of-Pipe Applications—A Review
,”
Energy
,
35
(
6
), pp.
2610
2628
.
20.
Yong
,
Z.
,
Mata
,
V.
, and
Rodrigues
,
A. E.
,
2002
, “
Adsorption of Carbon Dioxide at High Temperature—A Review
,”
Sep. Purif. Technol.
,
26
(
2–3
), pp.
195
205
.
21.
Hong
,
W. Y.
,
2022
, “
A Techno-Economic Review on Carbon Capture, Utilisation and Storage Systems for Achieving a Net-Zero CO2 Emissions Future
,”
Carbon Capture Sci. Technol.
,
3
, pp.
100044
100072
.
22.
Koros
,
W. J.
,
2004
, “
Evolving Beyond the Thermal age of Separation Processes: Membranes Can Lead the way
,”
AIChE J.
,
50
(
10
), pp.
2326
2334
.
23.
Taeño
,
M.
,
Adnan
,
A.
,
Luengo
,
C.
,
Serrano
,
Á
,
Dauvergne
,
J. L.
,
Crocomo
,
P.
,
Huerta
,
A.
,
Doppiu
,
S.
, and
del Barrio E
,
P.
,
2023
, “
Improved Thermophysical and Mechanical Properties in LiNaSO4 Composites for Thermal Energy Storage
,”
Nanomaterials
,
14
(
1
), pp.
78
94
.
24.
Özerinç
,
S.
,
Kakaç
,
S.
, and
Yazıcıoğlu
,
A. G.
,
2010
, “
Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review
,”
Microfluid. Nanofluid.
,
8
(
2
), pp.
145
170
.
25.
Maghrabie
,
H. M.
,
Olabi
,
A. G.
,
Sayed
,
E. T.
,
Wilberforce
,
T.
,
Elsaid
,
K.
,
Doranehgard
,
M. H.
, and
Abdelkareem
,
M. A.
,
2023
, “
Microchannel Heat Sinks With Nanofluids for Cooling Electronic Components: Performance Enhancement, Challenges, and Limitations
,”
Ther. Sci. Eng. Prog.
,
37
, pp.
101608
101638
.
26.
Tirupati Rao
,
V.
, and
Raja Sekhar
,
Y.
,
2023
, “
Exergo-Economic and CO2 Emission Analysis of Bi-Symmetrical Web Flow Photovoltaic-Thermal System Under Diurnal Conditions
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
032001
.
27.
Li
,
Y.
,
Tung
,
S.
,
Schneider
,
E.
, and
Xi
,
S.
,
2009
, “
A Review on Development of Nanofluid Preparation and Characterization
,”
Powder Technol.
,
196
(
2
), pp.
89
101
.
28.
Teles
,
M. P.
, and
Ismail
,
K. A.
,
2022
, “
Experimental and Numerical Assessments of the Effects of Vacuum and Solar Film on the Performance of a Low Concentration Eccentric Solar Collector
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
091301
.
29.
Alizadeh
,
R.
,
Abad
,
J. M. N.
,
Fattahi
,
A.
,
Mohebbi
,
M. R.
,
Doranehgard
,
M. H.
,
Li
,
L. K.
,
Alhajri
,
E.
, and
Karimi
,
N.
,
2021
, “
A Machine Learning Approach to Predicting the Heat Convection and Thermodynamics of an External Flow of Hybrid Nanofluid
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
070908
.
30.
Nguele
,
R.
,
Sreu
,
T.
,
Inoue
,
H.
,
Sugai
,
Y.
, and
Sasaki
,
K.
,
2019
, “
Enhancing oil Production Using Silica-Based Nanofluids: Preparation, Stability, and Displacement Mechanisms
,”
Ind. Eng. Chem. Res.
,
58
(
32
), pp.
15045
15060
.
31.
Kumaresan
,
G.
,
Venkatachalapathy
,
S.
,
Asirvatham
,
L. G.
, and
Wongwises
,
S.
,
2014
, “
Comparative Study on Heat Transfer Characteristics of Sintered and Mesh Wick Heat Pipes Using CuO Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
208
215
.
32.
Khoshvaght-Aliabadi
,
M.
,
Rad
,
S. H.
, and
Hormozi
,
F.
,
2016
, “
Al2O3–Water Nanofluid Inside Wavy Mini-Channel With Different Cross-Sections
,”
J. Taiwan Inst. Chem. Eng.
,
58
, pp.
8
18
.
33.
Sundar
,
L. S.
,
Singh
,
M. K.
,
Bidkin
,
I.
, and
Sousa
,
A. C.
,
2014
, “
Experimental Investigations in Heat Transfer and Friction Factor of Magnetic Ni Nanofluid Flowing in a Tube
,”
Int. J. Heat Mass Transfer
,
70
, pp.
224
234
.
34.
Kim
,
H. J.
,
Bang
,
I. C.
, and
Onoe
,
J.
,
2009
, “
Characteristic Stability of Bare Au-Water Nanofluids Fabricated by Pulsed Laser Ablation in Liquids
,”
Opt. Lasers Eng.
,
47
(
5
), pp.
532
538
.
35.
Hong
,
T.-K.
,
Yang
,
H.-S.
, and
Choi
,
C.
,
2005
, “
Study of the Enhanced Thermal Conductivity of Fe Nanofluids
,”
J. Appl. Phys.
,
97
(
6
), pp.
064311
064318
.
36.
Xu
,
X.
,
Li
,
H.
, and
Xian
,
G.
,
2012
, “
Energy Dissipation Behaviors of Surface Treated Multi-Walled Carbon Nanotubes-Based Nanofluid
,”
Mater. Lett.
,
66
(
1
), pp.
176
178
.
37.
Sen Gupta
,
S.
,
Manoj Siva
,
V.
,
Krishnan
,
S.
,
Sreeprasad
,
T.
,
Singh
,
P. K.
,
Pradeep
,
T.
, et al
,
2011
, “
Thermal Conductivity Enhancement of Nanofluids Containing Graphene Nanosheets
,”
J. Appl. Phys.
,
110
(
8
), pp.
084302
084309
.
38.
Park
,
S. D.
,
Lee
,
S. W.
,
Kang
,
S.
,
Bang
,
I. C.
,
Kim
,
J. H.
,
Shin
,
H. S.
,
Lee
,
D. W.
, and
Lee
,
D. W.
,
2010
, “
Effects of Nanofluids Containing Graphene/Graphene-Oxide Nanosheets on Critical Heat Flux
,”
Appl. Phys. Lett.
,
97
(
2
), pp.
1
11
.
39.
Sun
,
Z.
,
Pöller
,
S.
,
Huang
,
X.
,
Guschin
,
D.
,
Taetz
,
C.
,
Ebbinghaus
,
P.
,
Masa
,
J.
, et al
,
2013
, “
High-Yield Exfoliation of Graphite in Acrylate Polymers: A Stable Few-Layer Graphene Nanofluid With Enhanced Thermal Conductivity
,”
Carbon
,
64
, pp.
288
294
.
40.
Aghel
,
B.
,
Janati
,
S.
,
Alobaid
,
F.
,
Almoslh
,
A.
, and
Epple
,
B.
,
2022
, “
Application of Nanofluids in CO2 Absorption: A Review
,”
Appl. Sci.
,
12
(
6
), pp.
3200
3209
.
41.
Lu
,
S.
,
Song
,
J.
,
Li
,
Y.
,
Xing
,
M.
, and
He
,
Q.
,
2015
, “
Improvement of CO2 Absorption Using Al2O3 Nanofluids in a Stirred Thermostatic Reactor
,”
Can. J. Chem. En
,
93
(
5
), pp.
935
941
.
42.
Zhang
,
Q.
,
Cheng
,
C.
,
Wu
,
T.
,
Xu
,
G.
, and
Liu
,
W.
,
2020
, “
The Effect of Fe3O4 Nanoparticles on the Mass Transfer of CO2 Absorption Into Aqueous Ammonia Solutions
,”
Chem. Eng. Process.
,
154
, pp.
108002
108009
.
43.
Kars
,
R.
,
Best
,
R.
, and
Drinkenburg
,
A.
,
1979
, “
The Sorption of Propane in Slurries of Active Carbon in Water
,”
Chem. Eng. J.
,
17
(
2
), pp.
201
210
.
44.
Brilman
,
D. W. F.
,
van Swaaij
,
W. P. M.
, and
Versteeg
,
G.
,
1998
, “
A one-Dimensional in Stationary Heterogeneous Mass Transfer Model for Gas Absorption in Multiphase Systems
,”
Chem. Eng. Process.
,
37
(
6
), pp.
471
488
.
45.
Cheng
,
S. Y.
,
Liu
,
Y. Z.
, and
Qi
,
G. S.
,
2019
, “
Progress in the Enhancement of Gas–Liquid Mass Transfer by Porous Nanoparticle Nanofluids
,”
J. Mater. Sci.
,
54
(
20
), pp.
13029
13044
.
46.
Craig
,
V. S.
,
2004
, “
Bubble Coalescence and Specific-Ion Effects
,”
Curr. Opin. Colloid Interface Sci.
,
9
(
1–2
), pp.
178
184
.
47.
Jiang
,
J.
,
Zhao
,
B.
,
Zhuo
,
Y.
, and
Wang
,
S.
,
2014
, “
Experimental Study of CO2 Absorption in Aqueous MEA and MDEA Solutions Enhanced by Nanoparticles
,”
Int. J. Greenhouse Gas Control
,
29
, pp.
135
141
.
48.
Jung
,
J.-Y.
,
Lee
,
J. W.
, and
Kang
,
Y. T.
,
2012
, “
CO2 Absorption Characteristics of Nanoparticle Suspensions in Methanol
,”
J. Mech. Sci. Technol.
,
26
(
8
), pp.
2285
2290
.
49.
Koronaki
,
I.
,
Nitsas
,
M.
, and
Vallianos
,
C. A.
,
2016
, “
Enhancement of Carbon Dioxide Absorption Using Carbon Nanotubes—A Numerical Approach
,”
Appl. Therm. Eng.
,
99
, pp.
1246
1253
.
50.
Jeong
,
M.
,
Lee
,
J. W.
,
Lee
,
S. J.
, and
Kang
,
Y. T.
,
2017
, “
Mass Transfer Performance Enhancement by Nanoemulsion Absorbents During CO2 Absorption Process
,”
Int. J. Heat Mass Transfer
,
108
, pp.
680
690
.
51.
Salih
,
H. A.
,
Pokhrel
,
J.
,
Reinalda
,
D.
,
AlNashf
,
I.
,
Khaleel
,
M.
,
Vega
,
L. F.
,
Karanikolos
,
G. N.
, and
Zahra
,
M. A.
,
2021
, “
Hybrid–Slurry/Nanofluid Systems as Alternative to Conventional Chemical Absorption for Carbon Dioxide Capture: A Review
,”
Int. J. Greenhouse Gas Control
,
110
, pp.
103415
103422
.
52.
Zhang
,
Z.
,
Cai
,
J.
,
Chen
,
F.
,
Li
,
H.
,
Zhang
,
W.
, and
Qi
,
W.
,
2018
, “
Progress in Enhancement of CO2 Absorption by Nanofluids: A Mini Review of Mechanisms and Current Status
,”
Renewable Energy
,
118
, pp.
527
535
.
53.
Wang
,
D.
, and
Cheng
,
P.
,
2020
, “
Effects of Nanoparticles’ Wettability on Vapor Bubble Coalescence in Saturated Pool Boiling of Nanofluids: A Lattice Boltzmann Simulation
,”
Int. J. Heat Mass Transfer
,
154
, pp.
119669
119676
.
54.
Adam
,
S. A.
,
Ju
,
X.
,
Zhang
,
Z.
,
Lin
,
J.
,
Abd El-Samie
,
M. M.
, and
Xu
,
C.
,
2020
, “
Effect of Temperature on the Stability and Optical Properties of SiO2-Water Nanofluids for Hybrid Photovoltaic/Thermal Applications
,”
Appl. Therm. Eng.
,
175
, pp.
115394
115406
.
55.
Eshgarf
,
H.
,
Kalbasi
,
R.
,
Maleki
,
A.
, and
Shadloo
,
M. S.
,
2021
, “
A Review on the Properties, Preparation, Models and Stability of Hybrid Nanofluids to Optimize Energy Consumption
,”
J. Therm. Anal. Calorim.
,
144
(
5
), pp.
1959
1983
.
56.
Ali
,
H. M.
,
Babar
,
H.
,
Shah
,
T. R.
,
Sajid
,
M. U.
,
Qasim
,
M. A.
, and
Javed
,
S.
,
2018
, “
Preparation Techniques of TiO2 Nanofluids and Challenges: A Review
,”
Applied Sciences
,
8
(
4
), pp.
587
598
.
57.
Choi
,
S. U.
, and
Eastman
,
J. A.
,
2001
, “Enhanced Heat Transfer Using Nanofluids (No:US 6221275),” Argonne National Lab. (ANL), Argonne, United States.
58.
Huang
,
X. X.
, and
Zhang
,
W. G.
,
2008
, “
Study on Successively Preparation of Nano-TiO2 Ethanol Colloids by Pulsed Laser Ablation and Fluorescence Property
,”
Appl. Surf. Sci.
,
254
(
11
), pp.
3403
3407
.
59.
Zhu
,
H. T.
,
Lin
,
Y. S.
, and
Yin
,
Y. S.
,
2004
, “
A Novel One-Step Chemical Method for Preparation of Copper Nanofluids
,”
J. Colloid Interface Sci.
,
277
(
1
), pp.
100
103
.
60.
Sadrolhosseini
,
A. R.
,
Noor
,
A. S. B. M.
,
Shameli
,
K.
,
Mamdoohi
,
G.
,
Moksin
,
M. M.
, and
Mahdi
,
M. A.
,
2013
, “
Laser Ablation Synthesis and Optical Properties of Copper Nanoparticles
,”
J. Mater. Res.
,
28
(
18
), pp.
2629
2636
.
61.
Teng
,
T. P.
,
Cheng
,
C. M.
, and
Pai
,
F. Y.
,
2011
, “
Preparation and Characterization of Carbon Nanofluid by a Plasma Arc Nanoparticles Synthesis System
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
11
.
62.
Leena
,
M.
, and
Srinivasan
,
S.
,
2015
, “
Synthesis and Ultrasonic Investigations of Titanium Oxide Nanofluids
,”
J. Mol. Liq.
,
206
, pp.
103
109
.
63.
Hong
,
K. S.
,
Hong
,
T. K.
, and
Yang
,
H. S.
,
2006
, “
Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles
”,
Appl. Phys. Lett.
,
88
(
3
), pp.
031901
031912
.
64.
Mansour
,
D. E.
,
Atiya
,
E. G.
,
Khattab
,
R. M.
, and
Azmy
,
A. M.
,
2012
, “
Effect of Titania Nanoparticles on the Dielectric Properties of Transformer Oil-Based Nanofluids
,”
2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena
,
Montreal, QC, Canada
,
Oct. 14–17
, pp.
295
298
.
65.
Devendiran
,
D. K.
, and
Amirtham
,
V. A.
,
2016
, “
A Review on Preparation, Characterization, Properties and Applications of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
21
40
.
66.
Kannaiyan
,
S.
,
Boobalan
,
C.
,
Umasankaran
,
A.
,
Ravirajan
,
A.
,
Sathyan
,
S.
, and
Thomas
,
T.
,
2017
, “
Comparison of Experimental and Calculated Thermophysical Properties of Alumina/Cupric Oxide Hybrid Nanofluids
,”
J. Mol. Liq.
,
244
, pp.
469
477
.
67.
Nikkam
,
N.
,
Saleemi
,
M.
,
Haghighi
,
E. B.
,
Ghanbarpour
,
M.
,
Khodabandeh
,
R.
,
Muhammed
,
M.
,
Palm
,
B.
, and
Toprak
,
M. S.
,
2014
, “
Fabrication, Characterization and Thermophysical Property Evaluation of Water/Ethylene Glycol Based SiC Nanofluids for Heat Transfer Applications
,”
Nanomicro Lett.
,
6
(
2
), pp.
178
189
.
68.
Liu
,
M. S.
,
Lin
,
M. C.
,
Huang
,
I. T.
, and
Wang
,
C. C.
,
2005
, “
Enhancement of Thermal Conductivity With Carbon Nanotube for Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1202
1210
.
69.
Leong
,
K.
,
Ahmad
,
K. K.
,
Ong
,
H. C.
,
Ghazali
,
M.
, and
Baharum
,
A.
,
2017
, “
Synthesis and Thermal Conductivity Characteristic of Hybrid Nanofluids—A Review
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
868
878
.
70.
Valeh-e-Sheyda
,
P.
, and
Afshari
,
A.
,
2019
, “
A Detailed Screening on the Mass Transfer Modeling of the CO2 Absorption Utilizing Silica Nanofluid in a Wetted Wall Column
,”
Process Saf. Environ. Prot.
,
127
, pp.
125
132
.
71.
Xuan
,
Y.
,
2009
, “
Conception for Enhanced Mass Transport in Binary Nanofluids
,”
Heat Mass Transfer
,
46
(
2
), pp.
277
279
.
72.
Turanov
,
A. N.
, and
Tolmachev
,
Y. V.
,
2009
, “
Heat-and Mass-Transport in Aqueous Silica Nanofluids
,”
Heat Mass Transfer
,
45
(
12
), pp.
1583
1588
.
73.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2006
, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME Int. J. Heat Mass Transfer
,
128
(
6
), pp.
588
595
.
74.
Jang
,
S. P.
, and
Choi
,
S. U.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
.
75.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
,
2006
, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
,
6
(
7
), pp.
1529
1534
.
76.
Wang
,
T.
,
Yu
,
W.
,
Fang
,
M.
,
He
,
H.
,
Xiang
,
Q.
,
Ma
,
Q.
,
Xia
,
M.
,
Luo
,
Z.
, and
Cen
,
K.
,
2015
, “
Wetted-Wall Column Study on CO2 Absorption Kinetics Enhancement by Additive of Nanoparticles
,”
Greenhouse Gases: Sci. Technol.
,
5
(
5
), pp.
682
694
.
77.
Veilleux
,
J.
,
2010
, “
The Hydrodynamics of Mass Diffusion Enhancement in Nanofluids
,”
Ph.D. thesis
,
McGill University
,
Montreal, Canada
.
78.
Yuan
,
C.
,
Pan
,
Z.
,
Wang
,
Y.
,
Baena-Moreno
,
F. M.
,
Constantinou
,
A.
, and
Zhang
,
Z.
,
2023
, “
Carbon Capture Enhancement by Water-Based Nanofluids in a Hollow Fiber Membrane Contactor
,”
Energy Technol.
,
11
(
8
), pp.
2300254
2300267
.
79.
Arshadi
,
M.
,
Taghvaei
,
H.
,
Abdolmaleki
,
M.
,
Lee
,
M.
,
Eskandarloo
,
H.
, and
Abbaspourrad
,
A.
,
2019
, “
Carbon Dioxide Absorption in Water/Nanofluid by a Symmetric Amine-Based Nanodendritic Adsorbent
,”
Appl. Energy
,
242
, pp.
1562
1572
.
80.
Yu
,
W.
,
Wang
,
T.
,
Park
,
A.-H. A.
, and
Fang
,
M.
,
2019
, “
Review of Liquid Nano-Absorbents for Enhanced CO2 Capture
,”
Nanoscale
,
11
(
37
), pp.
17137
17156
.
81.
Pahlevaninezhad
,
M.
,
Etesami
,
N.
, and
Nasr Esfahany
,
M.
,
2021
, “
Improvement of CO2 Absorption by Fe3O4/Water Nanofluid Falling Liquid Film in Presence of the Magnetic Field
,”
Can. J. Chem. Eng.
,
99
(
2
), pp.
519
529
.
82.
Rahmatmand
,
B.
,
Keshavarz
,
P.
, and
Ayatollahi
,
S.
,
2016
, “
Study of Absorption Enhancement of CO2 by SiO2, Al2O3, CNT, and Fe3O4 Nanoparticles in Water and Amine Solutions
,”
J. Chem. Eng. Data
,
61
(
4
), pp.
1378
1387
.
83.
Taheri
,
M.
,
Mohebbi
,
A.
,
Hashemipour
,
H.
, and
Rashidi
,
A. M.
,
2016
, “
Simultaneous Absorption of Carbon Dioxide (CO2) and Hydrogen Sulfide (H2S) From CO2–H2S–CH4 Gas Mixture Using Amine-Based Nanofluids in a Wetted Wall Column
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
410
417
.
84.
Boldoo
,
T.
,
Ham
,
J.
, and
Cho
,
H.
,
2023
, “
Evaluation of CO2 Absorption Characteristics of Low-Cost Al2O3/MeOH Nanoabsorbent Using Porous Nickel Foam for High Efficiency CO2 Absorption System
,”
J. Cleaner Prod.
,
384
, pp.
135624
135633
.
85.
Yi
,
Q.
,
Zhao
,
C.
,
Lv
,
C.
,
Wan
,
G.
,
Meng
,
M.
, and
Sun
,
L.
,
2023
, “
CO2 Absorption Enhancement in Low Transition Temperature Mixtures-Based Nanofluids: Experiments and Modeling
,”
Sep. Purif. Technol.
,
325
, pp.
124584
124594
.
86.
Al-Mamoori
,
A.
,
Krishnamurthy
,
A.
,
Rownaghi
,
A. A.
, and
Rezaei
,
F.
,
2017
, “
Carbon Capture and Utilization Update
,”
Energy Technol.
,
5
(
6
), pp.
834
849
.
87.
Wang
,
J. L.
,
Zhang
,
K.
,
Liu
,
Z. Z.
,
Ding
,
W. T.
,
Ji
,
Y. L.
, and
Gao
,
C. J.
,
2024
, “
Facile Preparation of Nanochannel Membrane Based on Polydopamine Modified Porous Organic Polymer Nanoparticles for High-Efficient dye Desalination
,”
Sep. Purif. Technol.
,
328
, pp.
125027
125038
.
88.
Kononova
,
S. V.
,
Gubanova
,
G. N.
,
Korytkova
,
E. N.
,
Sapegin
,
D. A.
,
Setnickova
,
K.
,
Petrychkovych
,
R.
, and
Uchytil
,
P.
,
2018
, “
Polymer Nanocomposite Membranes
,”
Appl. Sci.
,
8
(
7
), pp.
1181
1189
.
89.
Ding
,
Y.
,
2019
, “
Perspective on Gas Separation Membrane Materials From Process Economics Point of View
,”
Ind. Eng. Chem. Res.
,
59
(
2
), pp.
556
568
.
90.
Robeson
,
L. M.
,
2008
, “
The Upper Bound Revisited
,”
J. Membr. Sci.
,
320
(
1–2
), pp.
390
400
.
91.
Yan
,
W.
,
Wang
,
Z.
,
Zhao
,
S.
,
Wang
,
J.
,
Zhang
,
P.
, and
Cao
,
X.
,
2019
, “
Combining Co-Solvent-Optimized Interfacial Polymerization and Protective Coating-Controlled Chlorination for Highly Permeable Reverse Osmosis Membranes With High Rejection
,”
J. Membr. Sci.
,
572
, pp.
61
72
.
92.
Okoro
,
E. E.
,
Josephs
,
R.
,
Sanni
,
S. E.
, and
Nchila
,
Y.
,
2021
, “
Advances in the Use of Nanocomposite Membranes for Carbon Capture Operations
,”
Int. J. Chem. Eng.
,
2021
, pp.
1
22
.
93.
Park
,
H. B.
,
Kamcev
,
J.
,
Robeson
,
L. M.
,
Elimelech
,
M.
, and
Freeman
,
B. D.
,
2017
, “
Maximizing the Right Stuff: The Trade-Off Between Membrane Permeability and Selectivity
,”
Science
,
356
(
6343
), pp.
eaab0530
eaab0540
.
94.
Ghosh
,
S.
, and
Ramaprabhu
,
S.
,
2020
, “
Boron and Nitrogen Co-Doped Carbon Nanosheets Encapsulating Nano Iron as an Efficient Catalyst for Electrochemical CO2 Reduction Utilizing a Proton Exchange Membrane CO2 Conversion Cell
,”
J. Colloid Interface Sci.
,
559
, pp.
169
177
.
95.
Kumar
,
R.
,
Mangalapuri
,
R.
,
Ahmadi
,
M. H.
,
Vo
,
D. V.
,
Solanki
,
R.
, and
Kumar
,
P.
,
2020
, “
The Role of Nanotechnology on Post-Combustion CO2 Absorption in Process Industries
,”
Int. J. Low-Carbon Technol.
,
15
(
3
), pp.
361
367
.
96.
Goren
,
A. Y.
,
Erdemir
,
D.
, and
Dincer
,
I.
,
2024
, “
Comprehensive Review and Assessment of Carbon Capturing Methods and Technologies: An Environmental Research
,”
Environ. Res.
,
240
, pp.
117503
117531
.
97.
Senevirathna
,
H. L.
,
Wu
,
S.
,
Lee
,
C.
,
Kim
,
J. Y.
,
Kim
,
S. S.
,
Bai
,
K.
, and
Wu
,
P.
,
2023
, “
Enhancing MgO Efficiency in CO2 Capture: Engineered MgO/Mg (OH)2 Composites With Cl, SO42−, and PO43− Additives
,”
RSC Adv.
,
13
(
40
), pp.
27946
27955
.
98.
Al-Attabi
,
R.
,
Dumée
,
L. F.
,
Schütz
,
J. A.
, and
Morsi
,
Y.
,
2018
, “
Pore Engineering Towards Highly Efficient Electrospun Nanofibrous Membranes for Aerosol Particle Removal
,”
Sci. Total Environ.
,
625
, pp.
706
715
.
99.
Zainab
,
G.
,
Iqbal
,
N.
,
Babar
,
A. A.
,
Huang
,
C.
,
Wang
,
X.
,
Yu
,
J.
, and
Ding
,
B.
,
2017
, “
Freestanding, Spider-Web-Like Polyamide/Carbon Nanotube Composite Nanofibrous Membrane Impregnated With Polyethyleneimine for CO2 Capture
,”
Compos. Commun.
,
6
, pp.
41
47
.
100.
Song
,
Q.
,
Nataraj
,
S. K.
,
Roussenova
,
M. V.
,
Tan
,
J. C.
,
Hughes
,
D. J.
,
Li
,
W.
,
Bourgoin
,
P.
, et al
,
2012
, “
Zeolitic Imidazolate Framework (ZIF-8) Based Polymer Nanocomposite Membranes for Gas Separation
,”
Energy Environ. Sci.
,
5
(
8
), pp.
8359
8369
.
101.
Chi
,
X. Y.
,
Zhang
,
P. Y.
,
Guo
,
X. J.
, and
Xu
,
Z. L.
,
2018
, “
A Novel TFC Forward Osmosis (FO) Membrane Supported by Polyimide (PI) Microporous Nanofiber Membrane
,”
Appl. Surf. Sci.
,
427
, pp.
1
9
.
102.
Ng
,
H. M.
,
Leo
,
C. P.
, and
Abdullah
,
A. Z.
,
2017
, “
Selective Removal of Dyes by Molecular Imprinted TiO2 Nanoparticles in Polysulfone Ultrafiltration Membrane
,”
J. Environ. Chem. Eng.
,
5
(
4
), pp.
3991
3998
.
103.
Arumugham
,
T.
,
Amimodu
,
R. G.
,
Kaleekkal
,
N. J.
, and
Rana
,
D.
,
2019
, “
Nano CuO/g-C3N4 Sheets-Based Ultrafiltration Membrane With Enhanced Interfacial Affinity, Antifouling and Protein Separation Performances for Water Treatment Application
,”
J. Environ. Sci.
,
82
, pp.
57
69
.
104.
Tseng
,
H. H.
,
Kumar
,
I. A.
,
Weng
,
T. H.
,
Lu
,
C. Y.
, and
Wey
,
M. Y.
,
2009
, “
Preparation and Characterization of Carbon Molecular Sieve Membranes for Gas Separation—The Effect of Incorporated Multi-Wall Carbon Nanotubes
,”
Desalination
,
240
(
1–3
), pp.
40
45
.
105.
Hu
,
C. C.
,
Cheng
,
P. H.
,
Chou
,
S. C.
,
Lai
,
C. L.
,
Huang
,
S. H.
,
Tsai
,
H. A.
,
Hung
,
W. S.
, and
Lee
,
K. R.
,
2020
, “
Separation Behavior of Amorphous Amino-Modified Silica Nanoparticle/Polyimide Mixed Matrix Membranes for Gas Separation
,”
J. Membr. Sci.
,
595
, pp.
117542
117549
.
106.
Swapna
,
V. P.
,
Abhisha
,
V. S.
, and
Stephen
,
R.
,
2020
,
Polymer/Polyhedral Oligomeric Silsesquioxane Nanocomposite Membranes for Pervaporation
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
201
229
.
107.
Lau
,
W. J.
,
Ismail
,
A. F.
,
Isloor
,
A. M.
, and
Al-Ahmed
,
A.
, editors,
2018
,
Advanced Nanomaterials for Membrane Synthesis and Its Applications
,
Elsevier
,
Amsterdam, The Netherlands
.
108.
Thran
,
A.
,
Kroll
,
G.
, and
Faupel
,
F.
,
1999
, “
Correlation Between Fractional Free Volume and Diffusivity of Gas Molecules in Glassy Polymers
,”
J. Polym. Sci., Part B: Polym. Phys.
,
37
(
23
), pp.
3344
3358
.
109.
Alentiev
,
A. Y.
,
Bondarenko
,
G. N.
,
Kostina
,
Y. V.
,
Shantarovich
,
V. P.
,
Klyamkin
,
S. N.
,
Fedin
,
V. P.
,
Kovalenko
,
K. A.
, and
Yampolskii
,
Y. P.
,
2014
, “
PIM-1/MIL-101 Hybrid Composite Membrane Material: Transport Properties and Free Volume
,”
Pet. Chem.
,
54
(
7
), pp.
477
481
.
110.
Japip
,
S.
,
Wang
,
H.
,
Xiao
,
Y.
, and
Chung
,
T. S.
,
2014
, “
Highly Permeable Zeolitic Imidazolate Framework (ZIF)-71 Nano-Particles Enhanced Polyimide Membranes for Gas Separation
,”
J. Membr. Sci.
,
467
, pp.
162
174
.
111.
Sinha
,
R. S.
,
2013
,
Clay-Containing Polymer Nanocomposites: From Fundamentals to Real Applications
,
Elsevier
,
Amsterdam, The Netherlands
.
112.
Nematollahi
,
M. H.
,
Dehaghani
,
A. H.
, and
Abedini
,
R.
,
2016
, “
CO2/CH4 Separation With Poly (4-Methyl-1-Pentyne)(TPX) Based Mixed Matrix Membrane Filled With Al2O3 Nanoparticles
,”
Korean J. Chem. Eng.
,
33
(
2
), pp.
657
665
.
113.
Azizi
,
N.
,
Mohammadi
,
T.
, and
Behbahani
,
R. M.
,
2017
, “
Comparison of Permeability Performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 Nanocomposite Membranes for CO2/CH4 Separation
,”
Chem. Eng. Res. Des.
,
117
, pp.
177
189
.
114.
Selyanchyn
,
R.
, and
Fujikawa
,
S.
,
2017
, “
Membrane Thinning for Efficient CO2 Capture
,”
Sci. Technol. Adv. Mater.
,
18
(
1
), pp.
816
827
.
115.
Ahmed
,
F.
,
Kumar
,
S.
,
Arshi
,
N.
,
Anwar
,
M. S.
,
Su-Yeon
,
L.
,
Kil
,
G. S.
,
Park
,
D. W.
,
Koo
,
B. H.
, and
Lee
,
C. G.
,
2011
, “
Preparation and Characterizations of Polyaniline (PANI)/ZnO Nanocomposites Film Using Solution Casting Method
,”
Thin Solid Films
,
519
(
23
), pp.
8375
8378
.
116.
Bhaskar
,
A.
,
Banerjee
,
R.
, and
Kharul
,
U.
,
2014
, “
ZIF-8@ PBI-BuI Composite Membranes: Elegant Effects of PBI Structural Variations on Gas Permeation Performance
,”
J. Mater. Chem. A
,
2
(
32
), pp.
12962
12967
.
117.
Yave
,
W.
,
Car
,
A.
,
Wind
,
J.
, and
Peinemann
,
K. V.
,
2010
, “
Nanometric Thin Film Membranes Manufactured on Square Meter Scale: Ultra-Thin Films for CO2 Capture
,”
Nanotechnology
,
21
(
39
), pp.
395301
395309
.
118.
Muhammad
,
A.
,
Ncube
,
M.
,
Aravinth
,
N.
, and
Muthu
,
J.
,
2023
, “
Controlled Deposition of Single-Walled Carbon Nanotubes Doped Nanofibers Mats for Improving the Interlaminar Properties of Glass Fiber Hybrid Composites
,”
Polymers
,
15
(
4
), pp.
957
971
.
119.
Muthu
,
J. S.
,
Bradely
,
P.
,
Jinasena
,
I. I.
, and
Wegner
,
L. D.
,
2020
, “
Electro Spun Nanomats Strengthened Glass Fiber Hybrid Composites: Improved Mechanical Properties Using Continuous Nanofibers
,”
Polym. Compos.
,
41
(
3
), pp.
958
971
.
120.
West-Livingston
,
L.
,
Lim
,
J. W.
, and
Lee
,
S. J.
,
2023
, “
Translational Tissue-Engineered Vascular Grafts: From Bench to Bedside
,”
Biomaterials
,
1
, pp.
122322
122342
.
121.
Artico
,
M.
,
Roux
,
C.
,
Peruch
,
F.
,
Mingotaud
,
A. F.
, and
Montanier
,
C. Y.
,
2023
, “
Grafting of Proteins Onto Polymeric Surfaces: A Synthesis and Characterization Challenge
,”
Biotechnol. Adv.
,
1
, pp.
108106
108136
.
122.
Olivieri
,
L.
,
Roso
,
M.
,
De Angelis
,
M. G.
, and
Lorenzetti
,
A.
,
2018
, “
Evaluation of Electrospun Nanofibrous Mats as Materials for CO2 Capture: A Feasibility Study on Functionalized Poly (Acrylonitrile)(PAN)
,”
J. Membr. Sci.
,
546
, pp.
128
138
.
123.
Pérez-González
,
G. L.
,
Villarreal-Gómez
,
L. J.
,
Serrano-Medina
,
A.
,
Torres-Martínez
,
E. J.
, and
Cornejo-Bravo
,
J. M.
,
2019
, “
Mucoadhesive Electrospun Nanofibers for Drug Delivery Systems: Applications of Polymers and the Parameters’ Roles
,”
Int. J. Nanomed.
,
15
, pp.
5271
5285
.
124.
Yener
,
F.
, and
Jirsak
,
O.
,
2012
, “
Comparison Between the Needle and Roller Electrospinning of Polyvinylbutyral
,”
J. Nanomater.
,
2012
, pp.
839317
839326
.
125.
Liang
,
D.
,
Hsiao
,
B. S.
, and
Chu
,
B.
,
2007
, “
Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications
,”
Adv. Drug Delivery Rev.
,
59
(
14
), pp.
1392
1412
.
126.
Huang
,
Z. M.
,
Zhang
,
Y. Z.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
,
2003
, “
A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites
,”
Compos. Sci. Technol.
,
63
(
15
), pp.
2223
2253
.
127.
Persano
,
L.
,
Camposeo
,
A.
,
Tekmen
,
C.
, and
Pisignano
,
D.
,
2013
, “
Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review
,”
Macromol. Mater. Eng.
,
298
(
5
), pp.
504
520
.
128.
Sreedhar
,
I.
,
Vaidhiswaran
,
R.
,
Kamani
,
B. M.
, and
Venugopal
,
A.
,
2017
, “
Process and Engineering Trends in Membrane Based Carbon Capture
,”
Renewable Sustainable Energy Rev.
,
68
, pp.
659
684
.
129.
Espuche
,
E.
,
2023
, “
Nanocomposites for gas Barrier Applications: Governing Factors, Single and Coupled Effects, New Routes to Optimise the Function Properties
,”
Polym. Test.
,
125
, pp.
108124
108130
.
130.
Barrer
,
R. M.
,
1968
, “Diffusion and Permeation in Heterogeneous Media,”
Diffusion in Polymers
,
J.
Crank
, and
G. S.
Park
, eds.,
Academic Press
,
New York
.
131.
Zid
,
S.
,
Zinet
,
M.
, and
Espuche
,
E.
,
2018
, “
Modeling Diffusion Mass Transport in Multiphase Polymer Systems for Gas Barrier Applications: A Review
,”
J. Polym. Sci., Part B: Polym. Phys.
,
56
(
8
), pp.
621
639
.
132.
Kumar
,
P.
,
Sandeep
,
K. P.
,
Alavi
,
S.
, and
Truong
,
V. D.
,
2011
, “
A Review of Experimental and Modeling Techniques to Determine Properties of Biopolymer-Based Nanocomposites
,”
J. Food Sci.
,
76
(
1
), pp.
E2
E14
.
133.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism (Vol. 1)
,
Oxford University Press
,
England
.
134.
Nielsen
,
L. E.
,
1967
, “
Models for the Permeability of Filled Polymer Systems
,”
J. Macromol. Sci. Chem.
,
1
(
5
), pp.
929
942
.
135.
Bharadwaj
,
R. K.
,
2001
, “
Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites
,”
Macromolecules
,
34
(
26
), pp.
9189
9192
.
136.
Chen
,
B.
,
Evans
,
J. R.
,
Greenwell
,
H. C.
,
Boulet
,
P.
,
Coveney
,
P. V.
,
Bowden
,
A. A.
, and
Whiting
,
A.
,
2008
, “
A Critical Appraisal of Polymer–Clay Nanocomposites
,”
Chem. Soc. Rev.
,
37
(
3
), pp.
568
594
.
137.
Han
,
Y.
, and
Zhang
,
Z.
,
2019
, “
Nanostructured Membrane Materials for CO2 Capture: A Critical Review
,”
J. Nanosci. Nanotechnol.
,
19
(
6
), pp.
3173
3179
.
138.
Budd
,
P. M.
,
Ghanem
,
B. S.
,
Makhseed
,
S.
,
McKeown
,
N. B.
,
Msayib
,
K. J.
, and
Tattershall
,
C. E.
,
2004
, “
Polymers of Intrinsic Microporosity (PIMs): Robust, Solution-Processable, Organic Nanoporous Materials
,”
Chem. Commun.
,
2004
(
2
), pp.
230
231
.
139.
Budd
,
P. M.
,
McKeown
,
N. B.
,
Ghanem
,
B. S.
,
Msayib
,
K. J.
,
Fritsch
,
D.
,
Starannikova
,
L.
,
Belov
,
N.
,
Sanfirova
,
O.
,
Yampolskii
,
Y.
, and
Shantarovich
,
V.
,
2008
, “
Gas Permeation Parameters and Other Physicochemical Properties of a Polymer of Intrinsic Microporosity: Polybenzodioxane PIM-1
,”
J. Membr. Sci.
,
325
(
2
), pp.
851
860
.
140.
Harms
,
S.
,
Rätzke
,
K.
,
Faupel
,
F.
,
Chaukura
,
N.
,
Budd
,
P. M.
,
Egger
,
W.
, and
Ravelli
,
L.
,
2012
, “
Aging and Free Volume in a Polymer of Intrinsic Microporosity (PIM-1)
,”
J. Adhes.
,
88
(
7
), pp.
608
619
.
141.
Rezaee
,
Z.
,
Mohammadi
,
T.
, and
Bakhtiari
,
O.
,
2023
, “
Preparation of Organic-Filled Compatible Nanocomposite Membranes for Enhanced CO2 Permselectivity
,”
J. Ind. Eng. Chem.
,
126
, pp.
145
159
.
142.
Hasebe
,
S.
,
Aoyama
,
S.
,
Tanaka
,
M.
, and
Kawakami
,
H.
,
2017
, “
CO2 Separation of Polymer Membranes Containing Silica Nanoparticles With Gas Permeable Nano-Space
,”
J. Membr. Sci.
,
536
, pp.
148
155
.
143.
Kiadehi
,
A. D.
,
Rahimpour
,
A.
,
Jahanshahi
,
M.
, and
Ghoreyshi
,
A. A.
,
2015
, “
Novel Carbon Nano-Fibers (CNF)/Polysulfone (PSf) Mixed Matrix Membranes for Gas Separation
,”
J. Ind. Eng. Chem.
,
22
, pp.
199
207
.
144.
Wang
,
C.
,
Wu
,
J.
,
Cheng
,
P.
,
Xu
,
L.
, and
Zhang
,
S.
,
2023
, “
Nanocomposite Polymer Blend Membrane Molecularly Re-Engineered With 2D Metal-Organic Framework Nanosheets for Efficient Membrane CO2 Capture
,”
J. Membr. Sci.
,
685
, pp.
121950
121956
.
145.
Secchi
,
E.
,
Marbach
,
S.
,
Niguès
,
A.
,
Stein
,
D.
,
Siria
,
A.
, and
Bocquet
,
L.
,
2016
, “
Massive Radius-Dependent Flow Slippage in Carbon Nanotubes
,”
Nature
,
537
(
7619
), pp.
210
213
.
146.
Noy
,
A.
,
Park
,
H. G.
,
Fornasiero
,
F.
,
Holt
,
J. K.
,
Grigoropoulos
,
C. P.
, and
Bakajin
,
O.
,
2007
, “
Nanofluidics in Carbon Nanotubes
,”
Nano Today
,
2
(
6
), pp.
22
29
.
147.
Huang
,
Y.-C.
,
Chen
,
L.-F.
,
Huang
,
Y.-H.
,
Hu
,
C.-C.
,
Wu
,
C.-H.
, and
Jeng
,
R.-J.
,
2023
, “
Recyclable Nanocomposites for Carbon Dioxide Fixation and Membrane Separation Using Waste Polycarbonate
,”
Chem. Eng. J.
,
452
, pp.
139262
139269
.
You do not currently have access to this content.