Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Ensemble-based methods involve using multiple models for model calibration to correct initial models based on observed data. The assimilated ensemble models allow probabilistic analysis of future production behaviors. It is crucial to use good initial models to obtain reliable history matching and prediction of both oil and water productions especially for channel reservoirs having high uncertainty and heterogeneity. In this study, we propose a fast and reliable history matching method by selecting good initial models using streamline and deep learning. The proposed method is applied to two cases of 3D channel reservoir generated by sgems and generative adversarial network (GAN). The proposed method offers predictions with accuracy improvement more than 20% for oil and 10% for water productions compared with two other model selection methods. It also reduces the overall simulation time by 75% compared to the method of using all initial models.

References

1.
Kang
,
B.
, and
Choe
,
J.
,
2017
, “
Regeneration of Initial Ensembles With Facies Analysis for Efficient History Matching
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042903
.
2.
Lee
,
K.
,
Jung
,
S.
,
Lee
,
T.
, and
Choe
,
J.
,
2017
, “
Use of Clustered Covariance and Selective Measurement Data in Ensemble Smoother for Three-Dimensional Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022905
.
3.
Jung
,
H.
,
Jo
,
H.
,
Kim
,
S.
,
Kang
,
B.
,
Jeong
,
H.
, and
Choe
,
J.
,
2020
, “
Use of Channel Information Update and Discrete Cosine Transform in Ensemble Smoother for Channel Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011002
.
4.
Kang
,
B.
,
Jung
,
H.
,
Jeong
,
H.
, and
Choe
,
J.
,
2020
, “
Characterization of Three-Dimensional Channel Reservoirs Using Ensemble Kalman Filter Assisted by Principal Component Analysis
,”
Pet. Sci.
,
17
(
1
), pp.
182
195
.
5.
Evensen
,
G.
,
1994
, “
Sequential Data Assimilation With a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics
,”
J. Geophys. Res.
,
99
(
C5
), pp.
10143
10162
.
6.
Gu
,
Y.
, and
Oliver
,
D. S.
,
2005
, “
History Matching of the PUNQ-S3 Reservoir Model Using the Ensemble Kalman Filter
,”
SPE J.
,
10
(
2
), pp.
217
224
.
7.
Gu
,
Y.
, and
Oliver
,
D. S.
,
2006
, “
The Ensemble Kalman Filter for Continuous Updating of Reservoir Simulation Models
,”
ASME J. Energy Resour. Technol.
,
128
(
1
), pp.
79
87
.
8.
Jo
,
H.
,
Jung
,
H.
,
Ahn
,
J.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
History Matching of Channel Reservoirs Using Ensemble Kalman Filter With Continuous Update of Channel Information
,”
Energy Explor. Exploit.
,
35
(
1
), pp.
3
23
.
9.
Jung
,
H.
,
Jo
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Characterization of Various Channel Fields Using an Initial Ensemble Selection Scheme and Covariance Localization
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062906
.
10.
Nævdal
,
G.
,
Mannseth
,
T.
, and
Vefring
,
E. H.
,
2002
, “
Near-Well Reservoir Monitoring Through Ensemble Kalman Filter
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
SPE
,
Apr. 13–17
, pp.
959
967
.
11.
Evensen
,
G.
,
Hove
,
J.
,
Meisingset
,
H. C.
,
Reiso
,
E.
,
Seim
,
K. S.
, and
Espelid
,
Ø
,
2007
, “
Using the EnKF for Assisted History Matching of a North Sea Reservoir Model
,”
SPE Reservoir Simulation Symposium
,
Houston, TX
,
SPE
,
Feb. 26–28
, pp.
298
310
.
12.
Evensen
,
G.
,
2004
, “
Sampling Strategies and Square Root Analysis Schemes for the EnKF
,”
Ocean Dyn.
,
54
(
6
), pp.
539
560
.
13.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2009
, “
Estimating Channelized-Reservoir Permeabilities With the Ensemble Kalman Filter: The Importance of Ensemble Design
,”
SPE J.
,
14
(
2
), pp.
374
388
.
14.
Kim
,
S.
,
Jung
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Initial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022911
.
15.
Lee
,
K.
,
Jeong
,
H.
,
Jung
,
S.
, and
Choe
,
J.
,
2013
, “
Characterization of Channelized Reservoir Using Ensemble Kalman Filter With Clustered Covariance
,”
Energy Explor. Exploit.
,
31
(
1
), pp.
17
29
.
16.
Jung
,
H.
,
Jo
,
H.
,
Kim
,
S.
,
Lee
,
K.
, and
Choe
,
J.
,
2018
, “
Geological Model Sampling Using PCA-Assisted Support Vector Machine for Reliable Channel Reservoir Characterization
,”
J. Pet. Sci. Eng.
,
167
(
1
), pp.
396
405
.
17.
Kang
,
B.
,
Yang
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Ensemble Kalman Filter With Principal Component Analysis Assisted Sampling for Channelized Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032907
.
18.
Kang
,
B.
, and
Choe
,
J.
,
2020
, “
Uncertainty Quantification of Channel Reservoirs Assisted by Cluster Analysis and Deep Convolutional Generative Adversarial Networks
,”
J. Pet. Sci. Eng.
,
187
(
1
), p.
106742
.
19.
Kim
,
D.
,
Lee
,
Y.
, and
Choe
,
J.
,
2023
, “
Reliable Initial Model Selection for Efficient Characterization of Channel Reservoirs in Ensemble Kalman Filter
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
122901
.
20.
King
,
M. J.
, and
Datta-Gupta
,
A.
,
1998
, “
Streamline Simulation: A Current Perspective
,”
In Situ
,
22
(
1
), pp.
91
117
.
21.
Datta-Gupta
,
A.
,
2000
, “
Streamline Simulation: A Technology Update
,”
JPT J. Pet. Technol.
,
52
(
12
), pp.
68
74
.
22.
Datta-Gupta
,
A.
, and
King
,
M. J.
,
2007
,
Streamline Simulation: Theory and Practice
, Vol.
11
,
Society of Petroleum Engineers
,
Richardson, TX
.
23.
Pintelas
,
E.
,
Livieris
,
I.
, and
Pintelas
,
P.
,
2021
, “
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
,”
Sensors
,
21
(
22
), pp.
1
16
.
24.
Xu
,
J.
, and
Duraisamy
,
K.
,
2020
, “
Multi-Level Convolutional Autoencoder Networks for Parametric Prediction of Spatio-Temporal Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
372
(
1
), p.
113379
.
25.
Van Essen
,
G. M.
,
Zandvliet
,
M. J.
,
Van Den Hof
,
P. M. J.
,
Bosgra
,
O. H.
, and
Jansen
,
J. D.
,
2009
, “
Robust Waterflooding Optimization of Multiple Geological Scenarios
,”
SPE J.
,
14
(
1
), pp.
202
210
.
26.
Jansen
,
J. D.
,
Fonseca
,
R. M.
,
Kahrobaei
,
S.
,
Siraj
,
M. M.
,
Van Essen
,
G. M.
, and
Van den Hof
,
P. M. J.
,
2014
, “
The Egg Model—A Geological Ensemble for Reservoir Simulation
,”
Geosci. Data J.
,
1
(
2
), pp.
192
195
.
27.
Remy
,
N.
,
Boucher
,
A.
, and
Wu
,
J.
,
2009
,
Applied Geostatistics With SGeMS: A User's Guide
,
Cambridge University Press
,
Cambridge, UK
.
28.
Lee
,
Y.
,
Kang
,
B.
,
Kim
,
J.
, and
Choe
,
J.
,
2022
, “
Model Regeneration Scheme Using a Deep Learning Algorithm for Reliable Uncertainty Quantification of Channel Reservoirs
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
093004
.
29.
Pan
,
W.
,
Chen
,
J.
,
Mohamed
,
S.
,
Jo
,
H.
,
Santos
,
J. E.
, and
Pyrcz
,
M. J.
,
2023
, “
Efficient Subsurface Modeling With Sequential Patch Generative Adversarial Neural Networks
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 16–18
, pp.
1
17
.
You do not currently have access to this content.