Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Well placement optimization is a crucial task in terms of oil and gas recovery and economics in the field development plan. It poses significant challenges due to the multitude of local optima, which demand massive computational cost for global search algorithms. To address this, many proxy models have been applied for replacing reservoir simulations in many cases. Among these, convolutional neural network-based proxy models utilizing streamline time of flight maps as input demonstrated excellent performances. Nevertheless, these models exhibit diminishing performances during optimization processes, so additional retraining processes are required for successful results. In this study, we propose an initial sampling scheme using physics-informed quality maps incorporating static and dynamic information. The quality maps combine drainage area with permeability to represent the quality of each reservoir grid. The proposed scheme provides better performance than other sampling schemes. We demonstrate that the proposed scheme provides efficient well placement optimization regardless of the number of samples without retraining.

References

1.
Jung
,
H.
,
Jo
,
H.
,
Kim
,
S.
,
Kang
,
B.
,
Jeong
,
H.
, and
Choe
,
J.
,
2020
, “
Use of Channel Information Update and Discrete Cosine Transform in Ensemble Smoother for Channel Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
01201
.
2.
Kim
,
S.
,
Jung
,
H.
, and
Choe
,
J.
,
2019
, “
Enhanced History Matching of Gas Reservoirs With an Aquifer Using the Combination of Discrete Cosine Transform and Level Set Method in ES-MDA
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072906
.
3.
Kim
,
S.
,
Jung
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Initial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022911
.
4.
Jung
,
H.
,
Jo
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Characterization of Various Channel Fields Using an Initial Ensemble Selection Scheme and Covariance Localization
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062906
.
5.
Emerick
,
A. A.
,
Petrobras
,
S. A.
,
Silva
,
E.
,
Messer
,
B.
,
Almeida
,
L. F.
,
Szwarcman
,
D.
,
Pacheco
,
M. A. C.
, and
Vellasco
,
M. M. B. R.
,
2009
, “
Well Placement Optimization Using a Genetic Algorithm With Nonlinear Constraints
,”
SPE Reservoir Simulation Symposium Proceedings
,
The Woodlands, TX
,
Feb. 2–4
, pp.
98
117
.
6.
Afshari
,
S.
,
Aminshahidy
,
B.
, and
Pishvaie
,
M. R.
,
2015
, “
Well Placement Optimization Using Differential Evolution Algorithm
,”
Iran. J. Chem. Chem. Eng.
,
34
(
2
), pp.
109
116
.
7.
Onwunalu
,
J. E.
, and
Durlofsky
,
L. J.
,
2010
, “
Application of a Particle Swarm Optimization Algorithm for Determining Optimum Well Location and Type
,”
Comput. Geosci.
,
14
(
1
), pp.
183
198
.
8.
Yazdanpanah
,
A.
,
Rezaei
,
A.
,
Mahdiyar
,
H.
, and
Kalantariasl
,
A.
,
2019
, “
Development of an Efficient Hybrid GA-PSO Approach Applicable for Well Placement Optimization
,”
Adv. Geo-Energy Res.
,
3
(
4
), pp.
365
374
.
9.
Ocran
,
D.
,
Ikiensikimama
,
S. S.
, and
Broni-Bediako
,
E.
,
2022
, “
A Compositional Function Hybridization of PSO and GWO for Solving Well Placement Optimisation Problem
,”
Pet. Res.
,
7
(
3
), pp.
401
408
.
10.
Semnani
,
A.
,
Ostadhassan
,
M.
,
Xu
,
Y.
,
Sharifi
,
M.
, and
Liu
,
B.
,
2021
, “
Joint Optimization of Constrained Well Placement and Control Parameters Using Teaching-Learning Based Optimization and an Inter-distance Algorithm
,”
J. Pet. Sci. Eng.
,
203
, p.
108652
.
11.
Ding
,
S.
,
Lu
,
R.
,
Xi
,
Y.
,
Liu
,
G.
, and
Ma
,
J.
,
2020
, “
Efficient Well Placement Optimization Coupling Hybrid Objective Function With Particle Swarm Optimization Algorithm
,”
Appl. Soft Comput. J.
,
95
, p.
106511
.
12.
Raji
,
S.
,
Dehnamaki
,
A.
,
Somee
,
B.
, and
Mahdiani
,
M. R.
,
2022
, “
A New Approach in Well Placement Optimization Using Metaheuristic Algorithms
,”
J. Pet. Sci. Eng.
,
215
, p.
110640
.
13.
Naderi
,
M.
, and
Khamehchi
,
E.
,
2017
, “
Well Placement Optimization Using Metaheuristic Bat Algorithm
,”
J. Pet. Sci. Eng.
,
150
, pp.
348
354
.
14.
Nasir
,
Y.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2020
, “
Hybrid Derivative-Free Technique and Effective Machine Learning Surrogate for Nonlinear Constrained Well Placement and Production Optimization
,”
J. Pet. Sci. Eng.
,
186
, p.
106726
.
15.
Kim
,
J.
,
Choe
,
J.
, and
Lee
,
K.
,
2022
, “
Sequential Field Development Plan Through Robust Optimization Coupling With CNN and LSTM-Based Proxy Models
,”
J. Pet. Sci. Eng.
,
209
, p.
109887
.
16.
Kolajoobi
,
R. A.
,
Emami Niri
,
M.
,
Amini
,
S.
, and
Haghshenas
,
Y.
,
2023
, “
A Data-Driven Proxy Modeling Approach Adapted to Well Placement Optimization Problem
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
013401
.
17.
Cardoso
,
M.
, and
Durlofsky
,
L.
,
2010
, “
Use of Reduced-Order Modeling Procedures for Production Optimization
,”
SPE J.
,
15
(
2
), pp.
426
435
.
18.
Naderi
,
F.
,
Siavashi
,
M.
, and
Nakhaee
,
A.
,
2021
, “
A Novel Streamline-Based Objective Function for Well Placement Optimization in Waterfloods
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102104
.
19.
Kim
,
D.
,
Lee
,
Y.
, and
Choe
,
J.
,
2023
, “
Reliable Initial Model Selection for Efficient Characterization of Channel Reservoirs in Ensemble Kalman Filter
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
122901
.
20.
Lee
,
Y.
,
Kang
,
B.
,
Kim
,
J.
, and
Choe
,
J.
,
2022
, “
Model Regeneration Scheme Using a Deep Learning Algorithm for Reliable Uncertainty Quantification of Channel Reservoirs
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
093004
.
21.
Santos
,
J. E.
,
Xu
,
D.
,
Jo
,
H.
,
Landry
,
C. J.
,
Prodanović
,
M.
, and
Pyrcz
,
M. J.
,
2020
, “
PoreFlow-Net: A 3D Convolutional Neural Network to Predict Fluid Flow Through Porous Media
,”
Adv. Water Resour.
,
138
, p.
103539
.
22.
Lee
,
K.
,
Lim
,
J.
,
Yoon
,
D.
, and
Jung
,
H.
,
2019
, “
Prediction of Shale-Gas Production at Duvernay Formation Using Deep-Learning Algorithm
,”
SPE J.
,
24
(
6
), pp.
2423
2437
.
23.
Yang
,
F.
, and
Ma
,
J.
,
2019
, “
Deep-Learning Inversion: A Next-Generation Seismic Velocity Model Building Method
,”
Geophysics
,
84
(
4
), pp.
R583
R599
.
24.
Motaei
,
E.
, and
Ganat
,
T.
,
2023
, “
Smart Proxy Models Art and Future Directions in the Oil and Gas Industry: A Review
,”
Geoenergy Sci. Eng.
,
227
, p.
211918
.
25.
Kang
,
B.
, and
Choe
,
J.
,
2017
, “
Regeneration of Initial Ensembles With Facies Analysis for Efficient History Matching
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042903
.
26.
Lee
,
H.
,
Jin
,
J.
,
Shin
,
H.
, and
Choe
,
J.
,
2015
, “
Efficient Prediction of SAGD Productions Using Static Factor Clustering
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032907
.
27.
Park
,
J.
,
Jin
,
J.
, and
Choe
,
J.
,
2016
, “
Uncertainty Quantification Using Streamline Based Inversion and Distance Based Clustering
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012906
.
28.
Kang
,
B.
,
Yang
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Ensemble Kalman Filter With Principal Component Analysis Assisted Sampling for Channelized Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032907
.
29.
Kwon
,
S.
,
Park
,
G.
,
Jang
,
Y.
,
Cho
,
J.
,
Chu
,
M.
, and
Min
,
B.
,
2021
, “
Determination of Oil Well Placement Using Convolutional Neural Network Coupled With Robust Optimization Under Geological Uncertainty
,”
J. Pet. Sci. Eng.
,
201
, p.
108118
.
30.
Wang
,
N.
,
Chang
,
H.
,
Zhang
,
D.
,
Xue
,
L.
, and
Chen
,
Y.
,
2022
, “
Efficient Well Placement Optimization Based on Theory-Guided Convolutional Neural Network
,”
J. Pet. Sci. Eng.
,
208
, p.
109545
.
31.
Kim
,
J.
,
Yang
,
H.
, and
Choe
,
J.
,
2020
, “
Robust Optimization of the Locations and Types of Multiple Wells Using CNN Based Proxy Models
,”
J. Pet. Sci. Eng.
,
193
, p.
107424
.
32.
Lee
,
S.
,
2022
, “Well Placement Optimization Using a CNN-Based Proxy Model,”
Seoul National University
,
Seoul, South Korea
.
33.
Son
,
C.
,
Lee
,
S.
,
Kim
,
J.
, and
Choe
,
J.
,
2023
, “
Two-Stage Sampling Scheme for a CNN-Based Well Placement Optimization of 3D Benchmark Reservoirs
,”
Geoenergy Sci. Eng.
,
225
, p.
211677
.
34.
Kim
,
J.
,
Lee
,
K.
, and
Choe
,
J.
,
2021
, “
Efficient and Robust Optimization for Well Patterns Using a PSO Algorithm With a CNN-Based Proxy Model
,”
J. Pet. Sci. Eng.
,
207
, p.
109088
.
35.
Chu
,
M.
,
Min
,
B.
,
Kwon
,
S.
,
Park
,
G.
,
Kim
,
S.
, and
Huy
,
N. X.
,
2020
, “
Determination of an Infill Well Placement Using a Data-Driven Multi-modal Convolutional Neural Network
,”
J. Pet. Sci. Eng.
,
195
, p.
106805
.
36.
Ibrahima
,
F.
,
Tchelepi
,
H. A.
, and
Meyer
,
D. W.
,
2018
, “
An Efficient Distribution Method for Nonlinear Two-Phase Flow in Highly Heterogeneous Multidimensional Stochastic Porous Media
,”
Comput. Geosci.
,
22
(
1
), pp.
389
412
.
37.
Kennedy
,
J.
, and
Eberhart
,
R.
, 1995, “
Particle Swarm Optimization
,”
Proceedings of ICNN’95-International Conference on Neural Networks
,
Perth, Australia
,
Nov. 27–Dec. 1
, Vol. 4, pp.
1942
1948
.
38.
Clerc
,
M.
, and
Kennedy
,
J.
,
2002
, “
The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space
,”
IEEE Trans. Evol. Comput.
,
6
(
1
), pp.
58
73
.
39.
Remy
,
N.
,
Boucher
,
A.
, and
Wu
,
J.
,
2009
,
Applied Geostatistics With SGeMS: A Users' Guide
,
Cambridge University Press
,
Cambridge
.
40.
Kim
,
J.
,
Kang
,
B.
,
Jeong
,
H.
, and
Choe
,
J.
,
2019
, “
Field Development Optimization Using a Cooperative Micro-particle Swarm Optimization With Parameter Integration Schemes
,”
J. Pet. Sci. Eng.
,
183
, p.
106416
.
41.
Jansen
,
J. D.
,
Fonseca
,
R. M.
,
Kahrobaei
,
S.
,
Siraj
,
M. M.
,
Van Essen
,
G. M.
, and
Van den Hof
,
P. M. J.
,
2014
, “
The Egg Model—A Geological Ensemble for Reservoir Simulation
,”
Geosci. Data J.
,
1
(
2
), pp.
192
195
.
You do not currently have access to this content.