Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Continental shale oil is diversified, differentiated, and complex. It has disadvantages such as low production and inferior development benefits. Given this, the movability and productivity of shale oil were proposed in this research to evaluate the producible capacity and development potential of shale oil. Taking the Yingxiongling shale oil reservoir as an example, the microscopic movability and macroscopic productivity of the main lithofacies were systematically investigated via the NMR tests, imbibition experiments, uniaxial compression tests, and CT imaging. The characteristics of different lithofacies were clarified, and the favorable targets were identified. The results showed that the layered limy dolomite of the shale oil reservoir has the highest microscopic movability, followed by that of the laminated limy dolomite and the least of the laminated clayed shale. The laminated limy dolomite has better fluid flow properties, higher capacity to form fracture networks, and the best macroscopic productivity. The layered limy dolomite has medium macroscopic productivity, and that of the clayed shale is the least. Based on the field testing and experimental understanding of layered limy-dolomitic shale as high-quality targets, the laminated limy-dolomitic shale is further identified as a favorable target. It features a stronger capacity to form fracture networks, better imbibition performance, medium microscopic movability, and relatively high macroscopic productivity. This research further clarifies the correlation between microscopic movability and macroscopic productivity and provides theoretical support for exploring and developing the continental shale oil reservoir.

References

1.
Sun
,
L. D.
,
Zhao
,
W. Z.
,
Liu
,
H.
,
Zhu
,
R. K.
,
Bai
,
B.
,
Kang
,
Y.
,
Zhang
,
J. Y.
, and
Wu
,
S. T.
,
2023
, “
Concept and Application of “Sweet Spot” in Shale Oil
,”
Acta Pet. Sin.
,
44
(
1
), pp.
1
13
.
2.
Hu
,
S. Y.
,
Zhao
,
W. Z.
,
Hou
,
L. H.
,
Yang
,
Z.
,
Zhu
,
R. K.
,
Wu
,
S. T.
,
Bai
,
B.
, and
Jin
,
X.
,
2020
, “
Development Potential and Technical Strategy of Continental Shale oil in China
,”
Pet. Explor. Dev.
,
47
(
4
), pp.
819
828
.
3.
He
,
W. Y.
,
Zhu
,
R. K.
,
Cui
,
B. W.
,
Zhang
,
S. C.
,
Meng
,
Q. A.
,
Bai
,
B.
,
Feng
,
Z. H.
, et al
,
2023
, “
The Geoscience Frontier of Gulong Shale oil: Revealing the Role of Continental Shale From Oil Generation to Production
,”
Engineering.
,
28
, pp.
79
92
.
4.
Meng
,
X. B.
, and
Wang
,
J. X.
,
2019
, “
Production Performance Evaluation of Multifractured Horizontal Wells in Shale Oil Reservoirs: an Analytical Method
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102907
.
5.
Zhao
,
W. Z.
,
Zhu
,
R. K.
,
Liu
,
W.
,
Bian
,
C. S.
, and
Wang
,
K.
,
2023
, “
Lacustrine Medium-High Maturity Shale Oil in Onshore China: Enrichment Conditions and Occurrence Features
,”
Earth Sci. Front.
,
30
(
1
), pp.
116
127
.
6.
Wang
,
G. P.
,
Jin
,
Z. J.
,
Zhang
,
Q.
,
Zhu
,
R. K.
,
Tang
,
X.
,
Liu
,
K. Q.
, and
Dong
,
L.
,
2023
, “
Effects of Clay Minerals and Organic Matter on Pore Evolution of the Early Mature Lacustrine Shale in the Ordos Basin, China
,”
J. Asian Earth Sci.
,
246
, p.
105516
.
7.
Siwei
,
M.
,
Zihan
,
Z.
,
Jiaping
,
T.
,
Chuanqing,
Z.
,
Liu
,
Y
, and
Jianchun
,
X.
,
2023
, “
A Novel Upscaling Method for Evaluating Mechanical Properties of the Shale oil Reservoir Based on Cluster Analysis and Nanoindentation
,”
ASME J. Energy Resour. Technol.
,
145
(
11
), p.
112901
.
8.
Kalam
,
S.
,
Afagwu
,
C.
,
Al Jaberi
,
J.
,
Siddig
,
O. M.
,
Tariq
,
Z.
,
Mahmoud
,
M.
, and
Abdulraheem
,
A.
,
2021
, “
A Review on Non-Aqueous Fracturing Techniques in Uncoventional Reservoir
,”
J. Nat. Gas Sci. Eng.
,
95
, p.
104223
.
9.
Wang
,
S.
,
Qin
,
C. X.
,
Feng
,
Q. H.
,
Javadpour
,
F.
, and
Rui
,
Z. H.
,
2021
, “
A Framework for Predicting the Production Performance of Unconventional Resources Using Deep Learning
,”
Appl. Energy
,
295
, p.
117016
.
10.
Zhao
,
Y.
,
Rui
,
Z. H.
,
Zhang
,
Z.
,
Chen
,
S. W.
,
Yang
,
R. F.
,
Du
,
K.
,
Dindoruk
,
B.
,
Yang
,
T.
,
Stenby
,
E. H.
, and
Wilson
,
M. A.
,
2022
, “
Importance of Conformance Control in Reinforcing Synergy of CO2 EOR and Sequestration
,”
Pet. Sci.
,
19
(
6
), pp.
3088
3106
.
11.
He
,
L.
,
Huang
,
Y.
,
Meng
,
C. A.
,
Siwei
,
M. E.
, and
Jiaping
,
T. A.
,
2023
, “
Practice and Development Suggestions of Hydraulic Fracturing Technology in the Gulong Shale oil Reservoirs of Songliao Basin, NE China
,”
Pet. Explor. Dev.
,
50
(
3
), pp.
603
612
.
12.
Xu
,
J.
,
Guoxin
,
L.
,
Siwei
,
M.
,
Xiaoqi
,
W. A
,
Chang
,
L. I.
,
Jiaping
,
T. A.
, and
He
,
L.
,
2021
, “
Microscale Comprehensive Evaluation of Continental Shale oil Recoverability
,”
Pet. Explor. Dev.
,
48
(
1
), pp.
256
268
.
13.
Cui
,
J. F.
,
2022
, “
Effect of Viscosity Transition on Oil Flow in Shale and Tight Rocks
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
023005
.
14.
Frank
,
F.
,
Liu
,
C.
,
Alpak
,
F. O.
,
Berg
,
S.
, and
Riviere
B.
,
2018
, “
Direct Numerical Simulation of Flow on Pore⁃Scale Images Using the Phase⁃Field Method
,”
SPE J.
,
23
(
5
), pp.
1833
1850
.
15.
Osholake
,
T.
,
Yilin Wang
,
J.
, and
Erterkin
,
T.
,
2013
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
16.
Kuang
,
L. C.
,
Hou
,
L. H.
,
Wu
,
S. T.
,
Cui
,
J. W.
,
Tian
,
H.
,
Zhang
,
L. J.
,
Zhao
,
Z. Y.
,
Luo
,
X.
, and
Jiang
,
X. H.
,
2022
, “
Organic Matter Occurrence and Pore-Forming Mechanisms in Lacustrine Shales in China
,”
Pet. Sci.
,
19
(
4
), pp.
1460
1472
.
17.
Liu
,
K. Q.
,
Ostadhassan
,
M.
,
Zhou
,
J.
,
Gentzis
,
T.
, and
Rezaee
,
R.
,
2017
, “
Nanoscale Pore Structure Characterization of the Bakken Shale in the USA
,”
Fuel
,
209
, pp.
567
578
.
18.
Wenzhi
,
Z. H.
,
Congsheng
,
B. I.
,
Yongxin
,
L. I.
,
Zhang
,
J.
,
Kun
,
H. E.
,
Wei
,
L. I.
,
Zhang
,
B.
, et al
,
2023
, “
Enrichment Factors of Movable Hydrocarbons in Lacustrine Shale Oil and Exploration Potential of Shale Oil in Gulong Sag, Songliao Basin, NE China
,”
Pet. Explor. Dev.
,
50
(
3
), pp.
520
533
.
19.
Luo
,
S.
,
Lutkenhaus
,
J. L.
, and
Nasrabadi
,
H.
,
2020
, “
Effect of Nanoscale Pore-Size Distribution on Fluid Phase Behavior of Gas-Improved Oil Recovery in Shale Reservoirs
,”
SPE J.
,
25
(
3
), pp.
1406
1415
.
20.
Wei
,
J. G.
,
Zhou
,
X. F.
,
Shamil
,
S.
,
Yuriy
,
K.
,
Yang
,
E. L.
,
Yang
,
Y.
, and
Wang
,
A. L.
,
2023
, “
Lithofacies Influence Characteristics on Typical Shale Pore Structure
,”
Energy
,
282
, p.
128728
.
21.
Zhou
,
B.
,
Han
,
Q.
, and
Yang
,
P. Q.
,
2016
, “
Characterization of Nanoporous Systems in Gas Shales by Low Field NMR Cryoporometry
,”
Energy Fuel
,
30
(
11
), pp.
9122
9131
.
22.
Liu
,
Q.
,
Sun
,
M. D.
,
Sun
,
X. D.
,
Liu
,
B.
,
Ostadhassan
,
M.
,
Huang
,
W. X.
,
Chen
,
X. X.
, and
Pan
,
Z. J.
,
2023
, “
Pore Network Characterization of Shale Reservoirs Through State-of-the-art X-ray Computed Tomography: A Review
,”
Gas, Sci. Eng.
,
113
, p.
204967
.
23.
Yan
,
J.
,
Liu
,
L.
,
Yang
,
Y. F.
,
Sun
,
H.
, and
Zhang
,
L.
,
2023
, “
Characterizing Multi-Scale Shale Pore Structure Based on Multi-Experimental Imaging and Machine Learning
,”
Nat. Gas Ind. B
,
10
(
4
), pp.
361
371
.
24.
Liu
,
B.
,
Mohammadi
,
M.
,
Ma
,
Z. L.
,
Bai
,
L. H.
,
Wang
,
L.
,
Xu
,
Y. H.
,
Hemmati-Sarapardeh
,
A.
, and
Ostadhassan
,
M.
,
2023
, “
Pore Structure Evolution of Qingshankou Shale (Kerogen Type I) During Artificial Maturation via Hydrous and Anhydrous Pyrolysis: Experimental Study and Intelligent Modeling
,”
Energy
,
282
, p.
128359
.
25.
Meng
,
S. W.
,
Li
,
D. X.
,
Liu
,
X.
,
Zhang
,
Z. H.
,
Tao
,
J. P.
,
Yang
,
L.
, and
Rui
,
Z. H.
,
2023
, “
Study on Dynamic Fracture Growth Mechanism of Continental Shale Under Compression Failure
,”
Gas Sci. Eng.
,
114
, p.
204983
.
26.
Guo
,
T. K.
,
Tang
,
S. J.
,
Liu
,
S.
,
Liu
,
X. Q.
,
Xu
,
J. C.
,
Qi
,
N.
, and
Rui
,
Z. H.
,
2021
, “
Physical Simulation of Hydraulic Fracturing of Large-Sized Tight Sandstone Outcrops
,”
SPE J.
,
26
(
01
), pp.
372
393
.
27.
Meng
,
M. M.
,
Ge
,
H. K.
,
Shen
,
Y. H.
, and
Ji
,
W. M.
,
2021
, “
Evaluation of the Pore Structure Variation During Hydraulic Fracturing in Marine Shale Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
083002
.
28.
Zhang
,
F. Y.
, and
Emami-Meybodi
,
H.
,
2020
, “
A Semianalytical Method for Two-Phase Flowback Rate-Transient Analysis in Shale gas Reservoirs
,”
SPE J.
,
25
(
04
), pp.
1599
1622
.
29.
Zhang
,
F. Y.
, and
Emami-Meybodi
,
H.
,
2022
, “
A Type-Curve Method for Two-Phase Flowback Analysis in Hydraulically Fractured Hydrocarbon Reservoirs
,”
J. Pet. Sci. Eng.
,
209
, p.
109912
.
30.
Zhang
,
F. Y.
, and
Emami-Meybodi
,
H.
,
2022
, “
Semianalytical Method of Two-Phase Liquid Transport in Shale Reservoirs and Its Application in Fracture Characterization
,”
AIChE J.
,
68
(
2
), p.
e17449
.
You do not currently have access to this content.