Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Carbon dioxide could be stored in unconventional shale reservoirs in a supercritical state due to available pore volume, infrastructure, and injectivity. However, there is a lack of knowledge about the injectivity and storage capacity in shale reservoirs. In this paper, a two-dimensional dual-porosity, dual-permeability model was built to investigate CO2 injectivity and dynamic storage capacity spatially and temporally. Parametric studies are conducted to evaluate the effect of matrix permeability, fracture conductivity, fracture half-length, operating conditions, and near-wellbore connectivity on storage factors. Systematic and comprehensive numerical experiments are carried out using random sampling to generate a probability distribution of CO2 storage factors and replacement ratio. Results showed the parameters with the most impact to least impact on injectivity and storage factor: matrix permeability, near-wellbore connectivity, bottomhole pressure, fracture half-length, and fracture conductivity. The methodology in this study provides a foundation to examine how CO2 storage factors change spatially and temporally in and outside the stimulated reservoir volume. The new understanding can be applied to optimize field development, well spacing, and infill drilling to increase economic storage.

References

1.
Godec
,
M.
,
Koperna
,
G.
,
Petrusak
,
R.
, and
Oudinot
,
A.
,
2013
, “
Assessment of Factors Influencing CO2 Storage Capacity and Injectivity in Eastern U.S. Gas Shales
,”
Energy Procedia
,
37
, pp.
6644
6655
.
2.
Kulga
,
B.
,
Dilmore
,
R.
,
Wyatt
,
C.
, and
Ertekin
,
T.
,
2014
, “
Investigation of CO2 Storage and Enhanced Gas Recovery in Depleted Shale Gas Formations Using a Dual-Porosity/Dual-Permeability, Multiphase Reservoir Simulator
,” https://www.osti.gov/servlets/purl/1432657.
3.
Myshakin
,
E. M.
,
Singh
,
H.
,
Sanguinito
,
S.
,
Bromhal
,
G.
, and
Goodman
,
A. L.
,
2018
, “
Numerical Estimations of Storage Efficiency for the Prospective CO2 Storage Resource of Shales
,”
Int. J. Greenhouse Gas Control
,
76
, pp.
24
31
.
4.
Chu
,
H.
,
Liao
,
X.
,
Gao
,
Z.
,
Wang
,
L.
,
Yuan
,
Z.
, and
Zou
,
J.
,
2019
, “
A Novel Methodology for Estimating Carbon Geosequestration Capacity Based on Multiple Fractured Horizontal Well
,”
Proceedings of the Society of Petroleum Engineers—SPE Symposium: Asia Pacific Health, Safety, Security, Environment and Social Responsibility
,
Kuala Lumpur, Malaysia
,
Apr. 23–24
.
5.
Middleton
,
R. S.
,
Carey
,
J. W.
,
Currier
,
R. P.
,
Hyman
,
J. D.
,
Kang
,
Q.
,
Karra
,
S.
,
Jiménez-Martínez
,
J.
,
Porter
,
M. L.
, and
Viswanathan
,
H. S.
,
2015
, “
Shale Gas and Non-Aqueous Fracturing Fluids: Opportunities and Challenges for Supercritical CO2
,”
Appl. Energy
,
147
, pp.
500
509
.
6.
Williams
,
H.
,
Khatri
,
D.
,
Keese
,
R.
,
Le Roy-Delage
,
S.
,
Roye
,
J.
,
Leach
,
D.
,
Rottler
,
P.
,
Porcherie
,
O.
, and
Rodriguez
,
J.
,
2011
. “
Flexible, Expanding Cement System (FECS) Successfully Provides Zonal Isolation Across Marcellus Shale Gas Trends
.”
Proceedings of the Society of Petroleum Engineers—Canadian Unconventional Resources Conference 2011, CURC 2011
,
Calgary, Alberta, Canada
,
Nov. 15–17
, Vol. 3, pp.
2154
2172
.
7.
Jiang
,
Y.
,
Luo
,
Y.
,
Lu
,
Y.
,
Qin
,
C.
, and
Liu
,
H.
,
2016
, “
Effects of Supercritical CO2 Treatment Time, Pressure, and Temperature on Microstructure of Shale
,”
Energy
,
97
, pp.
173
181
.
8.
Levine
,
J. S.
,
Fukai
,
I.
,
Soeder
,
D. J.
,
Bromhal
,
G.
,
Dilmore
,
R. M.
,
Guthrie
,
G. D.
,
Rodosta
,
T.
, et al
,
2016
, “
U.S. DOE NETL Methodology for Estimating the Prospective CO2 Storage Resource of Shales at the National and Regional Scale
,”
Int. J. Greenhouse Gas Control
,
51
, pp.
81
94
.
9.
Kang
,
S. M.
,
Fathi
,
E.
,
Ambrose
,
R. J.
,
Akkutlu
,
I. Y.
, and
Sigal
,
R. F.
,
2011
, “
Carbon Dioxide Storage Capacity of Organic-Rich Shales
,”
J. Pet. Technol.
,
63
(
7
), pp.
114
117
.
10.
Dreisbach
,
F.
,
Staudt
,
R.
, and
Keller
,
J. U.
,
1999
, “
High Pressure Adsorption Data of Methane, Nitrogen, Carbon Dioxide and Their Binary and Ternary Mixtures on Activated Carbon
,”
Adsorption
,
5
(
3
), pp.
215
227
.
11.
Heller
,
R.
, and
Zoback
,
M.
,
2014
, “
Adsorption of Methane and Carbon Dioxide on Gas Shale and Pure Mineral Samples
,”
J. Unconv. Oil Gas Resour.
,
8
(
C
), pp.
14
24
.
12.
Edwards
,
R. W. J.
,
Celia
,
M. A.
,
Bandilla
,
K. W.
,
Doster
,
F.
, and
Kanno
,
C. M.
,
2015
, “
A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells
,”
Environ. Sci. Technol.
,
49
(
15
), pp.
9222
9229
.
13.
Hong
,
L.
,
Jain
,
J.
,
Romanov
,
V.
,
Lopano
,
C.
,
Disenhof
,
C.
,
Goodman
,
A.
,
Hedges
,
S.
,
Soeder
,
D.
,
Sanguinit
,
S.
, and
Dilmore
,
R.
,
2016
, “
An Investigation of Factors Affecting the Interaction of CO2 and CH4 on Shale in Appalachian Basin
,”
J. Unconv. Oil Gas Resour.
,
14
, pp.
99
112
.
14.
Seales
,
M. B.
,
2020
, “
Multiphase Flow in Highly Fractured Shale Gas Reservoirs: Review of Fundamental Concepts for Numerical Simulation
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
100801
.
15.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Yilin Wang
,
J.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
16.
Osholake
,
T.
,
Yilin Wang
,
J.
, and
Ertekin
,
T.
,
2012
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME. J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
17.
Ahn
,
C. H.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2017
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012903
.
18.
Pan
,
Y.
, and
Wang
,
J. Y.
,
2022
, “
Analysis of Compositions of Flowback Water From Marcellus Shale Wells by Utilizing Data Mining Techniques
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
013004
.
19.
Zhang
,
Y.
,
Kleit
,
A.
,
Morgan
,
E.
, and
Wang
,
J.
,
2024
, “
Analysis of Ultimate Gas Recovery in Shale Reservoirs
,”
ASME. J. Energy Resour. Technol.
,
146
(
8
), p.
083001
.
20.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
21.
Laesecke
,
A.
, and
Muzny
,
C. D.
,
2017
, “
Reference Correlation for the Viscosity of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
46
, p.
013107
.
You do not currently have access to this content.