Droplet flows with coalescence and breakup are simulated numerically using the lattice Boltzmann method. It is shown that the rising velocities are in good agreement with those obtained by the force balance and the empirical correlation. The breakup of droplets after coalescence is simulated well in terms of the critical Weber number. A numerical method to evaluate the interfacial area and the volume fraction in two-phase flows is proposed. It is shown that the interfacial area corresponds to the shape, the number and the size of droplets, and the proposed method is effective for numerical evaluation of interfacial area even if the interface changes dynamically.
Issue Section:
Technical Papers
1.
The RELAP5 Development Team, 1995, “RELAP5/MOD3 Code Manual,” NUREG/CR-5535.
2.
Safety Code Development Group, 1986, “TRAC-PF1/MOD1: An Advanced Best Estimate Computer Program for Pressurized Water Reactor Thermal-Hydraulic Analysis,” NUREG/CR-3858.
3.
Sato
, T.
, Jung
, R.-T.
, and Abe
, S.
, 2000
, “Direct Simulation of Droplet Flow With Mass Transfer at Interface
,” ASME J. Fluids Eng.
, 122
, pp. 510
–516
.4.
Lee, W. J., 1998, “State-of-the-Art Report on the Theoretical Modeling of Interfacial Area Concentration,” KAERI/AR-497/98.
5.
Delhaye
, J. M.
, and Bricard
, P.
, 1994
, “Interfacial Area in Bubbly Flow: Experimental Data and Correlations
,” Nucl. Eng. Des.
, 151
, pp. 65
–77
.6.
Kocamustafaogullari
, G.
, Huang
, W. D.
, and Razi
, J.
, 1994
, “Measurement and Modeling of Average Void Fraction, Bubble Size and Interfacial Area
,” Nucl. Eng. Des.
, 148
, pp. 437
–453
.7.
Zeitoun
, O.
, Shoukri
, M.
, and Chatoorgoon
, V.
, 1994
, “Measurement of Interfacial Area Concentration in Subcooled Liquid-Vapor Flow
,” Nucl. Eng. Des.
, 152
, pp. 243
–255
.8.
Frisch
, U.
, Hasslacher
, B.
, and Pomeau
, Y.
, 1986
, “Lattice-Gas Automata for the Navier-Stokes Equation
,” Phys. Rev. Lett.
, 56
, pp. 1505
–1508
.9.
Rothman
, D. H.
, and Zaleski
, S.
, 1994
, “Lattice-Gas Models of Phase Separation: Interfaces, Phase Transitions, and Multiphase Flow
,” Rev. Mod. Phys.
, 66
, pp. 1417
–1479
.10.
Chen
, H.
, and Doolen
, G. D.
, 1998
, “Lattice Boltzmann Method for Fluid Flows
,” Annu. Rev. Fluid Mech.
, 30
, pp. 329
–364
.11.
McNamara
, G. G.
, and Zanetti
, G.
, 1988
, “Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,” Phys. Rev. Lett.
, 61
, pp. 2332
–2335
.12.
Bhatnagar
, P. L.
, Gross
, E. P.
, and Krook
, M.
, 1954
, “A Model for Collision Processes in Gases. I: Small Amplitude Processes in Charged and Neutral One-Component System
,” Phys. Rev.
, 94
, pp. 511
–525
.13.
Chen
, H.
, Chen
, S.
, and Matthaeus
, W. H.
, 1992
, “Recovery of the Navier-Stokes Equations using a Lattice-Gas Boltzmann Method
,” Phys. Rev. A
, 45
, pp. R5339–R5342
R5339–R5342
.14.
Benzi
, R.
, Succi
, S.
, and Vergassola
, M.
, 1992
, “The Lattice Boltzmann-Equation—Theory and Applications
,” Phys. Rep.
, 222
, pp. 145
–197
.15.
Takada
, N.
, Misawa
, M.
, Tomiyama
, A.
, and Fujiwara
, S.
, 2000
, “Numerical Simulation of Two- and Three-Dimensional Two-Phase Fluid Motion by Lattice Boltzmann Method
,” Comput. Phys. Commun.
, 129
, pp. 233
–246
.16.
Wagner
, A. J.
, Giraud
, L.
, and Scott
, C. E.
, 2000
, “Simulation of a Cusped Bubble Rising in a Viscoelastic Fluid with a New Numerical Method
,” Comput. Phys. Commun.
, 129
, pp. 227
–232
.17.
Nie
, X.
, Qian
, Y.-H.
, Doolen
, G. D.
, and Chen
, S.
, 1998
, “Lattice Boltzmann Simulation of the Two-Dimensional Rayleigh-Taylor Instability
,” Phys. Rev. E
, 58
, pp. 6861
–6864
.18.
He
, X.
, Zhang
, R.
, Chen
, S
, and Doolen
, G. D.
, 1999
, “On the Three-Dimensional Rayleigh-Taylor Instability
,” Phys. Fluids
, 11
, pp. 1143
–1152
.19.
He
, X.
, Chen
, S.
, and Zhang
, R.
, 1999
, “A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability
,” J. Comput. Phys.
, 152
, pp. 642
–663
.20.
Sehgal
, B. R.
, Nourgaliev
, R. R.
, and Dinh
, T. N.
, 1999
, “Numerical Simulation of Droplet Deformation and Bread-Up by Lattice-Boltzmann Method
,” Prog. Nucl. Energy
, 34
, pp. 471
–488
.21.
Xi
, H.
, and Duncan
, C.
, 1999
, “Lattice Boltzmann Simulations of Three-Dimensional Single Droplet Deformation and Breakup Under Simple Shear Flow
,” Phys. Rev.
, 59
, pp. 3022
–3026
.22.
Gunstensen
, A. K.
, and Rothman
, D. H.
, 1991
, “Lattice Boltzmann Model of Immiscible Fluids
,” Phys. Rev. A
, 43
, pp. 4320
–4327
.23.
Rothman
, D. H.
, and Keller
, J. M.
, 1988
, “Immiscible Cellular-Automaton Fluids
,” J. Stat. Phys.
, 52
, pp. 1119
–1127
.24.
Grunau
, D.
, Chen
, S.
, and Eggert
, K.
, 1993
, “A Lattice Boltzmann Model for Multiphase Fluid Flows
,” Phys. Rev. A
, 5
, pp. 2557
–2562
.25.
Hou
, S.
, Shan
, X.
, Zou
, Q.
, Doolen
, G. D.
, and Soll
, W. E.
, 1997
, “Evaluation of Two Lattice Boltzmann Models for Multiphase Flows
,” J. Comput. Phys.
, 138
, pp. 695
–713
.26.
Landau, L. D., and Lifshitz, E. M., 1959, Fluid Mechanics, Pergamon, New York.
27.
Kandhai
, D.
, Koponen
, A.
, Hoekstra
, A.
, Kataja
, M.
, Timonen
, J.
, and Sloot
, P. M. A.
, 1999
, “Implementation Aspects of 3D Lattice-BGK: Boundaries, Accuracy, and a New Fast Relaxation Method
,” J. Comput. Phys.
, 150
, pp. 482
–501
.28.
Watanabe, T., Ebihara, K., Ito, G., and Kohno, K., 2000, “Development of a Two-Phase Flow Simulation Code using the Lattice Boltzmann Method and Its Parallelization,” JAERI-Data/Code 2000-029.
29.
Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice Hall, N.J.
30.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops, and Particles, Academic Press, New York.
31.
Crabtree
, J. R.
, and Bridgwater
, J.
, 1971
, “Bubble Coalescence in Viscous Liquids
,” Chem. Eng. Sci.
, 26
, pp. 839
–851
.32.
Wallis, G. B., 1969, One-Dimensional Two-Phase Flow, McGraw-Hill, New York.
Copyright © 2002
by ASME
You do not currently have access to this content.