In this work, the onset of turbulence inside a rectangular chamber is investigated, with and without side-wall injection, in the presence of an oscillatory pressure gradient. Two techniques are used to define the transition from laminar to turbulent regimes: statistical analysis and flow visualization. Calibrated hot film anemometry and a computer data acquisition system are used to record and analyze acoustical flow data. Four classifications of flow regimes are reported: (a) laminar, (b) distorted laminar, (c) weakly turbulent, and (d) conditionally turbulent. Despite numerous attempts to promote turbulence, a fully turbulent flow does not develop at any of the driving frequencies tested. Statistical measurements reveal that a periodic drop in standard deviation of axial velocity fluctuations always occurs, indicating relaminarization within each cycle. Transition between flow regimes is assessed from the standard deviation of velocity data correlated as a function of the acoustic Reynolds number ReA. Under predominantly laminar conditions, the standard deviation is found to vary approximately with the square of the acoustic Reynolds number. Under turbulent conditions, the standard deviation becomes almost directly proportional to the acoustic Reynolds number. Inception of turbulence in the oscillatory flow with side-wall injection is found to be reproducible at the same critical value of ReA200.

1.
Majdalani
,
J.
, and
Van Moorhem
,
W. K.
,
1998
, “
Improved Time-Dependent Flowfield Solution for Solid Rocket Motors
,”
AIAA J.
,
36
(
2
), pp.
241
248
.
2.
Majdalani
,
J.
,
1999
, “
The Boundary Layer Structure in Cylindrical Rocket Motors
,”
AIAA J.
,
37
(
4
), pp.
505
508
.
3.
Vincent, G. E., 1957, “Contribution to the Study of Sediment Transport on a Horizontal Bed Due to Wave Action,” Proceedings of the Conference on Coastal Engineering, Vol. 16, pp. 326–335.
4.
Collins
,
J. I.
,
1963
, “
Inception of Turbulence at the Bed under Periodic Gravity Waves
,”
J. Geophys. Res.
,
68
, pp.
6007
6014
.
5.
Sergeev
,
S. I.
,
1966
, “
Fluid Oscillations in Pipes at Moderate Reynolds Numbers
,”
Fluid Dyn.
,
1
, pp.
21
22
.
6.
Merkli
,
P.
, and
Thomann
,
H.
,
1975
, “
Transition to Turbulence in Oscillating Pipe Flow
,”
J. Fluid Mech.
,
68
, pp.
567
575
.
7.
Hino, M., and Sawamoto, M., 1975, “Linear Stability Analysis of an Oscillatory Flow between Parallel Plates,” Proceedings of the 7th Symposium on Turbulence, pp. 1–7.
8.
Hino
,
M.
,
Sawamoto
,
M.
, and
Takasu
,
S.
,
1976
, “
Experiments on Transition to Turbulence in an Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
75
, pp.
193
207
.
9.
Hino
,
M.
,
Kashiwayanagi
,
M.
,
Nakayama
,
A.
, and
Hara
,
T.
,
1983
, “
Experiments on the Turbulence Statistics and the Structure of a Reciprocating Oscillatory Flow
,”
J. Fluid Mech.
,
131
, pp.
193
207
.
10.
Hino
,
M.
,
Fukunishi
,
Y.
, and
Meng
,
Y.
,
1990
, “
Experimental Study of a Three-Dimensional Large-Scale Structure in a Reciprocating Oscillatory Flow
,”
Fluid Dyn. Res.
,
6
, pp.
261
275
.
11.
Ohmi
,
M.
,
Iguchi
,
M.
,
Kakehashi
,
K.
, and
Masuda
,
T.
,
1982
, “
Transition to Turbulence and Velocity Distribution in an Oscillating Pipe Flow
,”
Bull. JSME
,
25
, pp.
365
371
.
12.
Akhavan-Alizadeh, R., 1987, “An Investigation of Transition and Turbulence in Oscillatory Stokes Layers,” Ph.D. dissertation, MIT.
13.
Traineau, J. C., Hervat, P., and Kuentzmann, P., 1986, “Cold-Flow Simulation of a Two-Dimensional Nozzleless Solid-Rocket Motor,” AIAA 86–1447.
14.
Ma
,
Y.
,
Van Moorhem
,
W. K.
, and
Shorthill
,
R. W.
,
1990
, “
Innovative Method of Investigating the Role of Turbulence in the Velocity Coupling Phenomenon
,”
ASME J. Vibr. Acoust.
,
112
(
4
), pp.
550
555
.
15.
Ma
,
Y.
,
Van Moorhem
,
W. K.
, and
Shorthill
,
R. W.
,
1991
, “
Experimental Investigation of Velocity Coupling in Combustion Instability
,”
J. Propul. Power
,
7
(
5
), pp.
692
699
.
16.
Huesmann
,
K.
, and
Eckert
,
E. R. G.
,
1990
, “
Studies of the Laminar Flow and the Transition to Turbulence in Porous Tubes with Uniform Injection through the Tube Wall
,”
J. Propul. Power
,
6
(
6
), pp.
690
705
.
17.
Dunlap
,
R.
,
Willoughby
,
P. G.
, and
Hermsen
,
R. W.
,
1974
, “
Flowfield in the Combustion Chamber of a Solid Propellant Rocket Motor
,”
AIAA J.
,
12
(
10
), pp.
1440
1445
.
18.
Dunlap, R., Sabnis, J. S., Beddini, R. A., Flandro, G. A., Brown, R. S., Gibeling, H. J., Blackner, A. M., Waugh, R. C., and McDonald, H., 1985, “Internal Flow Field Investigation,” U.S. Air Force Rocket Propulsion Laboratory No. TR-85-079.
19.
Dunlap
,
R.
,
Blackner
,
A. M.
,
Waugh
,
R. C.
,
Brown
,
R. S.
, and
Willoughby
,
P. G.
,
1990
, “
Internal Flow Field Studies in a Simulated Cylindrical Port Rocket Chamber
,”
J. Propul. Power
,
6
(
6
), pp.
690
704
.
20.
Barron
,
J.
,
Majdalani
,
J.
, and
Van Moorhem
,
W. K.
,
2000
, “
A Novel Investigation of the Oscillatory Field over a Transpiring Surface
,”
J. Sov. Laser Res.
,
235
(
2
), pp.
281
297
.
21.
Richardson
,
E. G.
,
1928
, “
The Amplitude of Sound Waves in Resonators
,”
Proc. Phys. Soc.
,
40
(
27
), pp.
206
220
.
22.
Davis
,
S. H.
,
1976
, “
The Stability of Time-Periodic Flows
,”
Annu. Rev. Fluid Mech.
,
8
, pp.
57
74
.
23.
von Kerczek
,
C.
, and
Davis
,
S. H.
,
1974
, “
Linear Stability Theory of Oscillatory Stokes Layers
,”
J. Fluid Mech.
,
62
(
4
), pp.
753
773
.
You do not currently have access to this content.