Three types of cavitation instabilities through flat plate cascades, which are similar to “forward rotating cavitation,” “rotating-stall cavitation” and “cavitation surge” occurring in high-speed rotating fluid machinery, are represented numerically under the three-blade cyclic condition. A numerical method employing a locally homogeneous model of compressible gas-liquid two-phase medium is applied to solve the above flow fields, because this permits the entire flow field inside and outside the cavity to be treated through only one system of governing equations. In addition, the numerical method suites to analyze unsteady cavitating flow with a long time evolution. From the calculated results of the present numerical simulation with wide range of cavitation number and flow rate, we obtain a cavitation performance curve of the present three-blade cyclic cascade, analyze the aspects of unsteady cavitation, and discuss the characteristics and mechanisms of cavitation.

1.
Bhattacharyya
,
A.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1997
, “
Rotordynamic Forces in Cavitating Inducers
,”
ASME J. Fluids Eng.
,
119
, pp.
768
774
.
2.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
, pp.
775
781
.
3.
Hashimoto
,
T.
,
Yoshida
,
M.
,
Watanabe
,
M.
,
Kamijo
,
K.
, and
Tsujimoto
,
Y.
,
1997
, “
Experimental Study on Rotating Cavitation of Rocket Propellant Pump Inducers
,”
J. of Propulsion and Power
,
13-4
, pp.
488
494
.
4.
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2002
, “
Rotating Cavitation in a Centrifugal Pump Impeller of Low Specific Speed
,”
ASME J. Fluids Eng.
,
124
, pp.
356
362
.
5.
Shimura
,
T.
,
Yoshida
,
M.
,
Kamijo
,
K.
,
Uchiumi
,
M.
, and
Yasutomi
,
Y.
,
2002
, “
A Rotating Stall Type Phenomenon Caused by Cavitation in LE-7A LH2 Turbopump
,”
JSME International J., Series B
,
45-1
, pp.
41
46
.
6.
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Karaoka
,
D.
,
Horiguchi
,
H.
, and
Wahl
,
F.
,
2001
, “
Effects of Alternate Leading Edge Cutback on Unsteady Cavitation in 4-Bladed Inducers
,”
ASME J. Fluids Eng.
,
123
, pp.
762
770
.
7.
Stripling, L. B., 1962, “Cavitation in Turbopumps-Part 2,” ASME J. Basic Eng., pp. 339–350.
8.
Jakobsen, J. K., 1964, “On the Mechanism of Head Break-down in Cavitating Inducer,” ASME J. Basic Eng., pp. 291–305.
9.
Acosta, A., J., 1975, “The Dynamic Transfer Function for a Cavitating Inducer,” ASME publication, 75-WA/FE-16.
10.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
Y.
,
1993
, “
A theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
115
, pp.
135
141
.
11.
Watanabe
,
S.
,
Yokota
,
K.
,
Tsujimoto
,
Y.
, and
Kamijo
,
K.
,
1999
, “
Three-Dimensional Linear Analysis of Rotating Cavitation in Inducers Using an Annular Cascade Model
,”
ASME J. Fluids Eng.
,
121
, pp.
866
871
.
12.
Horiguchi
,
H.
,
Watanabe
,
S.
, and
Tsujimoto
,
Y.
,
2000
, “
A Theoretical Analysis of Alternate Blade Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
122
, pp.
156
163
.
13.
Fujii
,
A.
,
Semenov
,
Y.
, and
Tsujimoto
,
Y.
,
2003
, “
Analysis of Rotating Choke in an Inducer
,”
JSME Trans.
,
69–680
, pp.
764
771
, in Japanese.
14.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Brennen
,
C. E.
,
2001
, “
Unified Treatment of Flow Instabilities of Turbomachines
,”
AIAA J. of Propulsion and Power
,
17-3
, pp.
636
643
.
15.
Joussellin, F., Courtot, Y., Coutier-Delgosha, O., and Reboud, J. L., 2001, “Cavitating Inducer Instabilities: Experimental Analysis and 2D Numerical Simulation of Unsteady Flow in Blade Cascade,” Proc. CAV2001, B8.002, Pasadena, CA, USA.
16.
Iga, Y., Nohmi, M., Goto, A., Shin, B. R., and Ikohagi, T., 2002, “Numerical Analysis of Unstable Phenomena of Cavitation in Cascade with Finite Blade Numbers,” Proc. The 9th International Symp. on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA. CD-ROM FD-ABS-128.
17.
Coutier-Delgosha, O., Morel, P., Fortes-Patella, R., and Reboud, J. L., 2002, “Numerical Simulation of turbopump Inducer Cavitating Behavior,” Proc. The 9th International Symp. on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA.
18.
Song, C. C. S., 2002, “Current Status of CFD for Cavitating Flows,” Proc. The 9th International Symp. on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA.
19.
Dupont, P., and Okamura, T., 2002, “Cavitating Flow Calculation in Industry,” Proc. The 9th International Symp. on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA.
20.
Chen
,
H. T.
, and
Colins
,
R.
,
1971
, “
Shock Wave Propagation Past an Ocean Surface
,”
J. Comput. Phys.
,
7
, pp.
89
101
.
21.
Iga
,
Y.
,
Nohmi
,
M.
,
Goto
,
A.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
,
2003
, “
Numerical Study of Sheet Cavitation Break-off Phenomenon on a Cascade Hydrofoil
,”
ASME J. Fluids Eng.
,
125
, pp.
643
651
.
22.
Karplus, H. B., 1958, “The velocity of sound in a liquid containing gas bubbles,” Armour Research Foundation of Illinois Institute of Technology, C00-248.
23.
Beattie
,
D. R. H.
, and
Whally
,
P. B.
,
1982
, “
A Simple Two-Phase Frictional Pressure Drop Calculation Method
,”
Int. J. Multiphase Flow
,
8-1
, pp.
83
87
.
24.
Yee, H. C., 1987, “Upwind and Symmetric Shock-Capturing Schemes,” NASA-TM, 89464.
You do not currently have access to this content.