Numerical simulations of cavitation in liquid nitrogen and liquid hydrogen are presented; they represent a broader class of problems where the fluid is operating close to its critical temperature and thermal effects of cavitation are important. A compressible, multiphase formulation that accounts for the energy balance and variable thermodynamic properties of the fluid is described. Fundamental changes in the physical characteristics of the cavity when thermal effects become significant are identified; the cavity becomes more porous, the interface less distinct, and it shows increased spreading while getting shorter in length. The heat transfer model postulated in variants of the B-factor theory, where viscous thermal diffusion at the vapor-liquid interface governs the vaporization, is shown to be a poor approximation for cryogenic fluids. In contrast the results presented here indicate that the cavity is sustained by mass directly convecting into it and vaporization occurring as the liquid crosses the cavity interface. Parametric studies for flow over a hydrofoil are presented and compared with experimental data of Hord (1973, “Cavitation in Liquid Cryogens II—Hydrofoil,” NASA CR-2156); free-stream velocity is shown to be an independent parameter that affects the level of thermal depression.

1.
Hord, J., 1973, “Cavitation in Liquid Cryogens II—Hydrofoil,” NASA CR-2156.
2.
Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford University, New York.
3.
Stahl
,
H. A.
, and
Stepanoff
,
A. J.
,
1956
, “
Thermodynamic Aspects of Cavitation in Centrifugal Pumps
,”
Trans. ASME
,
78
, pp.
1691
1693
.
4.
Salemann
,
V.
,
1959
, “
Cavitation and NPSH Requirements of Various Liquids
,”
ASME J. Basic Eng.
,
81
, pp.
167
180
.
5.
Ruggeri, R. S., and Moore, R. D., 1969, “Method for Prediction of Pump Cavitation Performance for Various Liquids, Liquid Temperature, and Rotation Speeds,” NASA, TN, D-5292.
6.
Holl
,
J. W.
,
Billet
,
M. L.
, and
Weir
,
D. S.
,
1975
, “
Thermodynamic Effects on Developed Cavitation
,”
ASME J. Fluids Eng.
,
97
(
4
), pp.
507
516
.
7.
Cooper
,
P.
,
1967
, “
Analysis of Single and Two-Phase Flows in Turbopump Inducers
,”
J. Eng. Power
,
89
, pp.
577
588
.
8.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
Cavity Flow Predictions Based on the Euler Equations
,”
J. Fluid Mech.
,
240
, pp.
59
96
.
9.
Colonius
,
T.
,
d’Auria
,
F.
, and
Brennen
,
C. E.
,
2000
, “
Acoustic Saturation in Bubbly Cavitating Flow Adjacent to an Oscillating Wall
,”
Phys. Fluids
,
12
(
11
), pp.
2752
2761
.
10.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
11.
Prosperetti
,
A.
,
1991
, “
The Thermal Behavior of Oscillating Gas Bubbles
,”
J. Fluid Mech.
,
222
, pp.
587
616
.
12.
Matsumoto
,
Y.
, and
Takemura
,
F.
,
1994
, “
Influence of Internal Phenomena on Gas Bubble Motion (Effects of Thermal Diffusion, Phase Change on the Gas-Liquid Interface and Mass Diffusion Between Vapor and Non-Condensable Gas in the Collapsing Phase)
,”
JSME Int. J., Ser. B
,
37
(
2
), pp.
736
745
.
13.
Delale
,
C. F.
,
2002
, “
Thermal Damping in Cavitating Nozzle Flows
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
969
976
.
14.
Ahuja
,
V.
,
Hosangadi
,
A.
, and
Arunajatesan
,
S.
,
2001
, “
Simulations of Cavitating Flows Using Hydbrid Unstructured Meshes
,”
ASME J. Fluids Eng.
,
123
, pp.
331
340
.
15.
Hosangadi, A., Lee, R. A., Cavallo, P. A., Sinha, N., and York, B. J., 1998, “Hybrid, Viscous, Unstructured Mesh Solver for Propulsive Applications,” AIAA-98-3153, AIAA 34th JPC, Cleveland, OH (34th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, Cleveland, OH, July 13–15, 1998).
16.
Ruggeri, R. S., and Moore, R. D., 1968, “Prediction of Thermodynamic Effects of Developed Cavitation Based on Liquid-Hydrogen and Freon-114 Data in Scaled Venturis,” NASA TN, D-4387.
17.
Lemmon, E. W., McLinden, M. O., Peskin, A. P., and Friend, D. G., 2000, “Thermodynamic and Transport Properties of Pure Fluids and Mixtures (NISR12).” NIST: Standard Reference Data Program National Institute of Standards and Technology, 100 Bureau Dr., Stop 2310 Gaithersburg, MD 20899-2310.
18.
So
,
R. M. C.
,
Sarkar
,
A.
,
Gerodimos
,
G.
, and
Zhang
,
J.
,
1997
, “
A Dissipation Rate Equation for Low Reynolds Number and Near-Wall Technique
,”
Theor. Comput. Fluid Dyn.
,
9
, pp.
47
63
.
19.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.
20.
Hosangadi
,
A.
,
Lee
,
R. A.
,
York
,
B. J.
,
Sinha
,
N.
, and
Dash
,
S. M.
,
1996
, “
Upwind Unstructured Scheme for Three-Dimensional Combusting Flows
,”
J. Propul. Power
,
12
(
3
), pp.
494
503
.
21.
Barth, T. J., and Linton, S. W., 1995, “An Unstructured Mesh Newton Solution for Compressible Fluid Flow and Its Parallel Implementation,” AIAA-95-0221, 33rd AIAA Aeorspace Sciences Mtg., Reno, NV, January 9–12, 1995.
22.
Chen
,
Y.
, and
Heister
,
S. D.
,
1996
, “
Modeling Hydrodynamic Nonequilibrium in Cavitating Flows
,”
ASME J. Fluids Eng.
,
118
, pp.
172
178
.
23.
Venkateswaran
,
S.
,
Lindau
,
J. W.
,
Kunz
,
R. F.
, and
Merkle
,
C. L.
,
2002
, “
Computation of Multiphase Mixture Flows With Compressibility Effects
,”
J. Comput. Phys.
,
180
, pp.
54
77
.
24.
Senocak
,
I.
, and
Shyy
,
W.
,
2002
, “
A Pressure-Based Method for Turbulent Cavitating Flow
,”
J. Comput. Phys.
,
176
, pp.
363
383
.
25.
Song, C. S. S., and Qin, Q., 2001, “Numerical Simulations of Unsteady Cavitating Flows,” Proceedings of the Fourth International Symposium on Cavitation, Pasadena, CA, California Institute of Technology, Pasadena, California, 20–23 June, 2001.
26.
Merkle, C. L., Feng, J. Z., and Buelow, P. E. O., 1998, “Computational Modeling of the Dynamics of Sheet Cavitation,” Proceedings of the 3rd International Symposium on Cavitation, Grenoble, France, Proceedings 3rd International Symposium on Cavitation, Grenoble, France, April 7–9, 1998.
27.
Sarosdy, L. R., and Acosta, A. J., 1960, “Note on Observations of Cavitation in Different Fluids,” Paper No. 60-WA-83, ASME Winter Annual Meeting, New York, November 27–December 2, 1960.
You do not currently have access to this content.